BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36892456)

  • 1. Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase.
    Kozyryev A; Lemen D; Dunn J; Rokita SE
    Biochemistry; 2023 Apr; 62(7):1298-1306. PubMed ID: 36892456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A switch between one- and two-electron chemistry of the human flavoprotein iodotyrosine deiodinase is controlled by substrate.
    Hu J; Chuenchor W; Rokita SE
    J Biol Chem; 2015 Jan; 290(1):590-600. PubMed ID: 25395621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.
    Bobyk KD; Ballou DP; Rokita SE
    Biochemistry; 2015 Jul; 54(29):4487-94. PubMed ID: 26151430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox control of iodotyrosine deiodinase.
    Hu J; Su Q; Schlessman JL; Rokita SE
    Protein Sci; 2019 Jan; 28(1):68-78. PubMed ID: 30052294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mammalian reductive deiodinase has broad power to dehalogenate chlorinated and brominated substrates.
    McTamney PM; Rokita SE
    J Am Chem Soc; 2009 Oct; 131(40):14212-3. PubMed ID: 19777994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution and mechanism of iodotyrosine deiodinase defied expectations.
    Sun Z; Su Q; Rokita SE
    Arch Biochem Biophys; 2017 Oct; 632():77-87. PubMed ID: 28774660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2'-hydroxy group of flavin mononucleotide influences the catalytic function and promiscuity of the flavoprotein iodotyrosine dehalogenase.
    Kozyryev A; Boucher PA; Quiñones-Jurgensen CM; Rokita SE
    RSC Chem Biol; 2023 Aug; 4(9):698-705. PubMed ID: 37654510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of iodotyrosine deiodinase from drosophila melanogaster.
    Phatarphekar A; Rokita SE
    Protein Sci; 2016 Dec; 25(12):2187-2195. PubMed ID: 27643701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Site Binding Is Not Sufficient for Reductive Deiodination by Iodotyrosine Deiodinase.
    Ingavat N; Kavran JM; Sun Z; Rokita SE
    Biochemistry; 2017 Feb; 56(8):1130-1139. PubMed ID: 28157283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of iodotyrosine deiodinase, a novel flavoprotein responsible for iodide salvage in thyroid glands.
    Thomas SR; McTamney PM; Adler JM; Laronde-Leblanc N; Rokita SE
    J Biol Chem; 2009 Jul; 284(29):19659-67. PubMed ID: 19436071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence Conservation Does Not Always Signify a Functional Imperative as Observed in the Nitroreductase Superfamily.
    Musila JM; Rokita SE
    Biochemistry; 2022 Apr; 61(8):703-711. PubMed ID: 35319879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
    Robinson RM; Rodriguez PJ; Sobrado P
    Arch Biochem Biophys; 2014 May; 550-551():58-66. PubMed ID: 24769337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iodotyrosine deiodinase: a unique flavoprotein present in organisms of diverse phyla.
    Phatarphekar A; Buss JM; Rokita SE
    Mol Biosyst; 2014 Jan; 10(1):86-92. PubMed ID: 24153409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved residue His-257 of
    Fang X; Osipiuk J; Chakravarthy S; Yuan M; Menzer WM; Nissen D; Liang P; Raba DA; Tuz K; Howard AJ; Joachimiak A; Minh DDL; Juarez O
    J Biol Chem; 2019 Sep; 294(37):13800-13810. PubMed ID: 31350338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the catalytic mechanism of choline oxidase.
    Fan F; Gadda G
    J Am Chem Soc; 2005 Feb; 127(7):2067-74. PubMed ID: 15713082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S; Curti B; Vanoni MA
    Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.