BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36892623)

  • 1. Photo-scanning Electrochemical Microscopy Observation of Overall Water Splitting at a Single Aluminum-Doped Strontium Titanium Oxide Microcrystal.
    Askarova G; Xiao C; Barman K; Wang X; Zhang L; Osterloh FE; Mirkin MV
    J Am Chem Soc; 2023 Mar; 145(11):6526-6534. PubMed ID: 36892623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing Overall Water Splitting on Single Microcrystals of Phosphorus-Doped BiVO
    Askarova G; Hesari M; Barman K; Mirkin MV
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47168-47176. PubMed ID: 37754848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Criteria for Efficient Photocatalytic Water Splitting Revealed by Studying Carrier Dynamics in a Model Al-doped SrTiO
    Li R; Takata T; Zhang B; Feng C; Wu Q; Cui C; Zhang Z; Domen K; Li Y
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202313537. PubMed ID: 37857989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Design of Particulate Photocatalyst Materials for Green Hydrogen Production.
    Higashi T; Domen K
    ChemSusChem; 2024 May; ():e202400663. PubMed ID: 38794839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narrow-Band-Gap Particulate Photocatalysts for One-Step-Excitation Overall Water Splitting.
    Xiao J; Hisatomi T; Domen K
    Acc Chem Res; 2023 Apr; 56(7):878-888. PubMed ID: 36917677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM.
    Askarova G; Hesari M; Wang C; Mirkin MV
    Anal Chem; 2022 May; 94(20):7169-7173. PubMed ID: 35532734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-Scanning Electrochemical Microscopy on the Nanoscale with Through-Tip Illumination.
    Bae JH; Nepomnyashchii AB; Wang X; Potapenko DV; Mirkin MV
    Anal Chem; 2019 Oct; 91(20):12601-12605. PubMed ID: 31560518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of local oxygen flux produced by photoelectrochemical hydroxide oxidation by scanning electrochemical microscopy.
    Gupta B; Aziz A; Sundriyal S; Shrivastav V; Melvin AA; Holdynski M; Nogala W
    Sci Rep; 2023 Mar; 13(1):5019. PubMed ID: 36977815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overall Water Splitting by a SrTaO
    Chen K; Xiao J; Vequizo JJM; Hisatomi T; Ma Y; Nakabayashi M; Takata T; Yamakata A; Shibata N; Domen K
    J Am Chem Soc; 2023 Feb; 145(7):3839-3843. PubMed ID: 36669205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanotubes as a Solid-State Electron Mediator for Visible-Light-Driven Z-Scheme Overall Water Splitting.
    Lin L; Ma Y; Zettsu N; Vequizo JJM; Gu C; Yamakata A; Hisatomi T; Takata T; Domen K
    J Am Chem Soc; 2024 May; 146(21):14829-14834. PubMed ID: 38748984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Overall Water Splitting by a Zirconium-Doped TaON-Based Photocatalyst.
    Xiao J; Nishimae S; Vequizo JJM; Nakabayashi M; Hisatomi T; Li H; Lin L; Shibata N; Yamakata A; Inoue Y; Domen K
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202116573. PubMed ID: 35182402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.
    Wang Q; Hisatomi T; Katayama M; Takata T; Minegishi T; Kudo A; Yamada T; Domen K
    Faraday Discuss; 2017 Apr; 197():491-504. PubMed ID: 28164191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Measurements of Electrocatalytic Reaction Rates with NanoSECM.
    Askarova G; Barman K; Mirkin MV
    Anal Chem; 2024 Apr; 96(15):6089-6095. PubMed ID: 38574269
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zhou X; Fang Y; Cai X; Zhang S; Yang S; Wang H; Zhong X; Fang Y
    ACS Appl Mater Interfaces; 2020 May; 12(18):20579-20588. PubMed ID: 32272011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuS co-catalyst modified hydrogenated SrTiO
    Zhou D; Wang G; Feng Y; Chen W; Chen J; Yu Z; Zhang Y; Wang J; Tang L
    Dalton Trans; 2021 Jun; 50(22):7768-7775. PubMed ID: 33998639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting.
    Melo MA; Wu Z; Nail BA; De Denko AT; Nogueira AF; Osterloh FE
    Nano Lett; 2018 Feb; 18(2):805-810. PubMed ID: 29276832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic water splitting with a quantum efficiency of almost unity.
    Takata T; Jiang J; Sakata Y; Nakabayashi M; Shibata N; Nandal V; Seki K; Hisatomi T; Domen K
    Nature; 2020 May; 581(7809):411-414. PubMed ID: 32461647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the overall water splitting activity of Ta
    Murthy DHK; Matsuzaki H; Wang Z; Suzuki Y; Hisatomi T; Seki K; Inoue Y; Domen K; Furube A
    Chem Sci; 2019 May; 10(20):5353-5362. PubMed ID: 31191893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale strontium titanate photocatalysts for overall water splitting.
    Townsend TK; Browning ND; Osterloh FE
    ACS Nano; 2012 Aug; 6(8):7420-6. PubMed ID: 22816530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.