These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36892954)

  • 1. Launching and Manipulation of Higher-Order In-Plane Hyperbolic Phonon Polaritons in Low-Dimensional Heterostructures.
    Lu G; Pan Z; Gubbin CR; Kowalski RA; De Liberato S; Li D; Caldwell JD
    Adv Mater; 2023 Jun; 35(22):e2300301. PubMed ID: 36892954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO
    Schultz JF; Krylyuk S; Schwartz JJ; Davydov AV; Centrone A
    Nanophotonics; 2024; 13(9):. PubMed ID: 38846933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling and Focusing In-Plane Hyperbolic Phonon Polaritons in α-MoO
    Zheng Z; Jiang J; Xu N; Wang X; Huang W; Ke Y; Zhang S; Chen H; Deng S
    Adv Mater; 2022 Feb; 34(6):e2104164. PubMed ID: 34791711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-mediated hyperbolic phonon polaritons in MoO
    Schwartz JJ; Le ST; Krylyuk S; Richter CA; Davydov AV; Centrone A
    Nanophotonics; 2021 Feb; 10(5):. PubMed ID: 36451975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas.
    Pons-Valencia P; Alfaro-Mozaz FJ; Wiecha MM; Biolek V; Dolado I; Vélez S; Li P; Alonso-González P; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nat Commun; 2019 Jul; 10(1):3242. PubMed ID: 31324759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broad-Spectral-Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in α-MoO
    Dong W; Qi R; Liu T; Li Y; Li N; Hua Z; Gao Z; Zhang S; Liu K; Guo J; Gao P
    Adv Mater; 2020 Nov; 32(46):e2002014. PubMed ID: 32984988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam.
    Konečná A; Li J; Edgar JH; García de Abajo FJ; Hachtel JA
    Small; 2021 Oct; 17(39):e2103404. PubMed ID: 34453472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided Polaritons along the Forbidden Direction in MoO
    He M; Hoogendoorn L; Dixit S; Pan Z; Lu G; Diaz-Granados K; Li D; Caldwell JD
    Nano Lett; 2023 Jun; 23(11):5035-5041. PubMed ID: 37235534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable infrared hyperbolic metasurfaces using phase change materials.
    Folland TG; Fali A; White ST; Matson JR; Liu S; Aghamiri NA; Edgar JH; Haglund RF; Abate Y; Caldwell JD
    Nat Commun; 2018 Oct; 9(1):4371. PubMed ID: 30349033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation.
    Fali A; White ST; Folland TG; He M; Aghamiri NA; Liu S; Edgar JH; Caldwell JD; Haglund RF; Abate Y
    Nano Lett; 2019 Nov; 19(11):7725-7734. PubMed ID: 31650843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes.
    Lv J; Wu Y; Liu J; Gong Y; Si G; Hu G; Zhang Q; Zhang Y; Tang JX; Fuhrer MS; Chen H; Maier SA; Qiu CW; Ou Q
    Nat Commun; 2023 Jul; 14(1):3894. PubMed ID: 37393303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas.
    Martín-Sánchez J; Duan J; Taboada-Gutiérrez J; Álvarez-Pérez G; Voronin KV; Prieto I; Ma W; Bao Q; Volkov VS; Hillenbrand R; Nikitin AY; Alonso-González P
    Sci Adv; 2021 Oct; 7(41):eabj0127. PubMed ID: 34623915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in α-MoO
    Qu Y; Chen N; Teng H; Hu H; Sun J; Yu R; Hu D; Xue M; Li C; Wu B; Chen J; Sun Z; Liu M; Liu Y; García de Abajo FJ; Dai Q
    Adv Mater; 2022 Jun; 34(23):e2105590. PubMed ID: 35238092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-
    Ramer G; Tuteja M; Matson JR; Davanco M; Folland TG; Kretinin A; Taniguchi T; Watanabe K; Novoselov KS; Caldwell JD; Centrone A
    Nanophotonics; 2020; 9():. PubMed ID: 33365225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial.
    Dai S; Ma Q; Liu MK; Andersen T; Fei Z; Goldflam MD; Wagner M; Watanabe K; Taniguchi T; Thiemens M; Keilmann F; Janssen GC; Zhu SE; Jarillo-Herrero P; Fogler MM; Basov DN
    Nat Nanotechnol; 2015 Aug; 10(8):682-6. PubMed ID: 26098228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guided spiraling phonon polaritons in rolled one-dimensional MoO
    Chen R; Li P
    Opt Express; 2023 Dec; 31(26):42995-43003. PubMed ID: 38178403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Adjacent Materials on the Propagation of Phonon Polaritons in Hexagonal Boron Nitride.
    Kim KS; Trajanoski D; Ho K; Gilburd L; Maiti A; van der Velden L; de Beer S; Walker GC
    J Phys Chem Lett; 2017 Jul; 8(13):2902-2908. PubMed ID: 28604008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective excitation of hyperbolic phonon polaritons-induced broadband absorption via α-MoO
    Pian C; Sang T; Li S; Yang C; Zhang X
    Discov Nano; 2023 Mar; 18(1):41. PubMed ID: 37382713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guided Mid-IR and Near-IR Light within a Hybrid Hyperbolic-Material/Silicon Waveguide Heterostructure.
    He M; Halimi SI; Folland TG; Sunku SS; Liu S; Edgar JH; Basov DN; Weiss SM; Caldwell JD
    Adv Mater; 2021 Mar; 33(11):e2004305. PubMed ID: 33522035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement.
    Yang Y; Finch MF; Xiong D; Lail BA
    Opt Express; 2018 Oct; 26(20):26272-26282. PubMed ID: 30469717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.