These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 36893089)
21. Self-reported navigation ability is associated with optic flow-sensitive regions' functional connectivity patterns during visual path integration. Zajac L; Burte H; Taylor HA; Killiany R Brain Behav; 2019 Apr; 9(4):e01236. PubMed ID: 30884216 [TBL] [Abstract][Full Text] [Related]
22. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Cogné M; Taillade M; N'Kaoua B; Tarruella A; Klinger E; Larrue F; Sauzéon H; Joseph PA; Sorita E Ann Phys Rehabil Med; 2017 Jun; 60(3):164-176. PubMed ID: 27017533 [TBL] [Abstract][Full Text] [Related]
23. Investigating the different domains of environmental knowledge acquired from virtual navigation and their relationship to cognitive factors and wayfinding inclinations. Muffato V; Miola L; Pellegrini M; Pazzaglia F; Meneghetti C Cogn Res Princ Implic; 2023 Aug; 8(1):50. PubMed ID: 37530868 [TBL] [Abstract][Full Text] [Related]
24. A systematic investigation of navigation impairment in chronic stroke patients: Evidence for three distinct types. Claessen MHG; Visser-Meily JMA; Meilinger T; Postma A; de Rooij NK; van der Ham IJM Neuropsychologia; 2017 Aug; 103():154-161. PubMed ID: 28684296 [TBL] [Abstract][Full Text] [Related]
25. Self-Reported Sense of Direction and Vestibular Function in the Baltimore Longitudinal Study of Aging (BLSA). Gandhi P; Biju K; Klatt BN; Simonsick E; Agrawal Y J Assoc Res Otolaryngol; 2021 Apr; 22(2):207-214. PubMed ID: 33449237 [TBL] [Abstract][Full Text] [Related]
27. Using virtual environments to investigate wayfinding in 8- to 12-year-olds and adults. Lingwood J; Blades M; Farran EK; Courbois Y; Matthews D J Exp Child Psychol; 2018 Feb; 166():178-189. PubMed ID: 28941380 [TBL] [Abstract][Full Text] [Related]
28. The potential of virtual reality for spatial navigation research across the adult lifespan. Diersch N; Wolbers T J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232 [TBL] [Abstract][Full Text] [Related]
29. Virtual reality as allocentric/egocentric technology for the assessment of cognitive decline in the elderly. Morganti F; Riva G Stud Health Technol Inform; 2014; 196():278-84. PubMed ID: 24732522 [TBL] [Abstract][Full Text] [Related]
30. Path Learning From Navigation in Aging: The Role of Cognitive Functioning and Wayfinding Inclinations. Muffato V; De Beni R Front Hum Neurosci; 2020; 14():8. PubMed ID: 32047427 [TBL] [Abstract][Full Text] [Related]
32. Hospital Greenspaces and the Impacts on Wayfinding and Spatial Experience: An Explorative Experiment Through Immersive Virtual Environment (IVE) Techniques. Jiang S; Allison D; Duchowski AT HERD; 2022 Jul; 15(3):206-228. PubMed ID: 35012375 [TBL] [Abstract][Full Text] [Related]
33. Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality. Kinkhabwala AA; Gu Y; Aronov D; Tank DW Elife; 2020 Mar; 9():. PubMed ID: 32149601 [TBL] [Abstract][Full Text] [Related]
34. The path more travelled: Time pressure increases reliance on familiar route-based strategies during navigation. Brunyé TT; Wood MD; Houck LA; Taylor HA Q J Exp Psychol (Hove); 2017 Aug; 70(8):1439-1452. PubMed ID: 27156528 [TBL] [Abstract][Full Text] [Related]
35. Local spatial navigation or "steering" in patients with vestibular loss in a virtual reality environment. Perez-Heydrich C; Pile M; Padova D; Cevallos A; Newman P; McNamara TP; Sayyid ZN; Agrawal Y J Vestib Res; 2023; 33(6):377-383. PubMed ID: 38073359 [TBL] [Abstract][Full Text] [Related]
36. Humans account for cognitive costs when finding shortcuts: An information-theoretic analysis of navigation. Lancia GL; Eluchans M; D'Alessandro M; Spiers HJ; Pezzulo G PLoS Comput Biol; 2023 Jan; 19(1):e1010829. PubMed ID: 36608145 [TBL] [Abstract][Full Text] [Related]
37. Navigation performance in glaucoma: virtual-reality-based assessment of path integration. Andac S; Stolle FH; Bernard M; Al-Nosairy KO; Wolbers T; Hoffmann MB Sci Rep; 2024 Sep; 14(1):21320. PubMed ID: 39266690 [TBL] [Abstract][Full Text] [Related]
38. Navigation ability in patients with acquired brain injury: A population-wide online study. van der Kuil MNA; Visser-Meily JMA; Evers AWM; van der Ham IJM Neuropsychol Rehabil; 2022 Aug; 32(7):1405-1428. PubMed ID: 33715586 [TBL] [Abstract][Full Text] [Related]
39. Acquisition and transfer of spatial knowledge during wayfinding. He Q; McNamara TP; Bodenheimer B; Klippel A J Exp Psychol Learn Mem Cogn; 2019 Aug; 45(8):1364-1386. PubMed ID: 30124310 [TBL] [Abstract][Full Text] [Related]
40. Wayfinding and spatial perception among adolescents with mild intellectual disability. Zach S; King A J Intellect Disabil Res; 2022 Dec; 66(12):1009-1022. PubMed ID: 35510305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]