These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36893247)

  • 1. Direct observation of motor protein stepping in living cells using MINFLUX.
    Deguchi T; Iwanski MK; Schentarra EM; Heidebrecht C; Schmidt L; Heck J; Weihs T; Schnorrenberg S; Hoess P; Liu S; Chevyreva V; Noh KM; Kapitein LC; Ries J
    Science; 2023 Mar; 379(6636):1010-1015. PubMed ID: 36893247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MINFLUX dissects the unimpeded walking of kinesin-1.
    Wirth JO; Scheiderer L; Engelhardt T; Engelhardt J; Matthias J; Hell SW
    Science; 2023 Mar; 379(6636):1004-1010. PubMed ID: 36893244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Can the laws of physics be circumvented? On methods of super-resolution fluorescence microscopy].
    Rüfli A
    Postepy Biochem; 2024 Jul; 70(2):139-149. PubMed ID: 39083472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering kinesin dynamics in neurites with MINFLUX.
    Wirth JO; Schentarra EM; Scheiderer L; Macarrón-Palacios V; Tarnawski M; Hell SW
    Commun Biol; 2024 May; 7(1):661. PubMed ID: 38811803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced changes in the structure and function of the kinesin-microtubule complex.
    Nishiyama M; Kimura Y; Nishiyama Y; Terazima M
    Biophys J; 2009 Feb; 96(3):1142-50. PubMed ID: 19186149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Kinesin-8 Kip3 switches protofilaments in a sideward random walk asymmetrically biased by force.
    Bugiel M; Böhl E; Schäffer E
    Biophys J; 2015 Apr; 108(8):2019-27. PubMed ID: 25902441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinesin rotates unidirectionally and generates torque while walking on microtubules.
    Ramaiya A; Roy B; Bugiel M; Schäffer E
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10894-10899. PubMed ID: 28973906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization of motors and microtubules in lipid-monolayered droplets.
    Baumann H; Surrey T
    Methods Cell Biol; 2015; 128():39-55. PubMed ID: 25997341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope.
    Schmidt R; Weihs T; Wurm CA; Jansen I; Rehman J; Sahl SJ; Hell SW
    Nat Commun; 2021 Mar; 12(1):1478. PubMed ID: 33674570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin-1, -2, and -3 motors use family-specific mechanochemical strategies to effectively compete with dynein during bidirectional transport.
    Gicking AM; Ma TC; Feng Q; Jiang R; Badieyan S; Cianfrocco MA; Hancock WO
    Elife; 2022 Sep; 11():. PubMed ID: 36125250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.
    Gwosch KC; Pape JK; Balzarotti F; Hoess P; Ellenberg J; Ries J; Hell SW
    Nat Methods; 2020 Feb; 17(2):217-224. PubMed ID: 31932776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snapshots of kinesin motors on microtubule tracks.
    Fourniol FJ; Moores CA
    Methods Mol Biol; 2011; 778():57-70. PubMed ID: 21809200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors.
    Downing KH; Nogales E
    Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence microscopy applied to intracellular transport by microtubule motors.
    Pathak D; Thakur S; Mallik R
    J Biosci; 2018 Jul; 43(3):437-445. PubMed ID: 30002263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MINSTED tracking of single biomolecules.
    Scheiderer L; von der Emde H; Hesselink M; Weber M; Hell SW
    Nat Methods; 2024 Apr; 21(4):569-573. PubMed ID: 38480903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy reveals distinct protofilament-scale structural dynamics in depolymerizing microtubule arrays.
    Wijeratne SS; Marchan MF; Tresback JS; Subramanian R
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35101922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular strain coordinates kinesin stepping behavior along microtubules.
    Yildiz A; Tomishige M; Gennerich A; Vale RD
    Cell; 2008 Sep; 134(6):1030-41. PubMed ID: 18805095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors.
    Bugiel M; Mitra A; Girardo S; Diez S; Schäffer E
    Nano Lett; 2018 Feb; 18(2):1290-1295. PubMed ID: 29380607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors.
    Memarian FL; Lopes JD; Schwarzendahl FJ; Athani MG; Sarpangala N; Gopinathan A; Beller DA; Dasbiswas K; Hirst LS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34934005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Observation of Kinesin-Driven Microtubule Motility and Binding of Adenosine Triphosphate Using Linear Zero-Mode Waveguides.
    Fujimoto K; Morita Y; Iino R; Tomishige M; Shintaku H; Kotera H; Yokokawa R
    ACS Nano; 2018 Dec; 12(12):11975-11985. PubMed ID: 30418736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.