These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36893280)

  • 1. Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair.
    Moreaud L; Viollet S; Urvoas A; Valerio-Lepiniec M; Mesneau A; Li de la Sierra-Gallay I; Miller J; Ouldali M; Marcelot C; Balor S; Soldan V; Meriadec C; Artzner F; Dujardin E; Minard P
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2218428120. PubMed ID: 36893280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of brick and staple components for ordered assembly of synthetic repeat proteins.
    Miller J; Urvoas A; Gigant B; Ouldali M; Arteni A; Mesneau A; Valerio-Lepiniec M; Artzner F; Dujardin E; Minard P
    J Struct Biol; 2023 Sep; 215(3):108012. PubMed ID: 37567372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.
    Fischer S; Hartl C; Frank K; Rädler JO; Liedl T; Nickel B
    Nano Lett; 2016 Jul; 16(7):4282-7. PubMed ID: 27184452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
    Bruetzel LK; Walker PU; Gerling T; Dietz H; Lipfert J
    Nano Lett; 2018 Apr; 18(4):2672-2676. PubMed ID: 29554806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami.
    Wang X; Jun H; Bathe M
    J Am Chem Soc; 2022 Mar; 144(10):4403-4409. PubMed ID: 35230115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
    Baker MAB; Tuckwell AJ; Berengut JF; Bath J; Benn F; Duff AP; Whitten AE; Dunn KE; Hynson RM; Turberfield AJ; Lee LK
    ACS Nano; 2018 Jun; 12(6):5791-5799. PubMed ID: 29812934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Nanostructure and Arrangement of Bacterial Magnetosomes by Small-Angle X-Ray Scattering.
    Rosenfeldt S; Riese CN; Mickoleit F; Schüler D; Schenk AS
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex DNA Brick Assembly.
    Ong LL; Ke Y
    Methods Mol Biol; 2017; 1500():41-49. PubMed ID: 27813000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.
    Urvoas A; Guellouz A; Valerio-Lepiniec M; Graille M; Durand D; Desravines DC; van Tilbeurgh H; Desmadril M; Minard P
    J Mol Biol; 2010 Nov; 404(2):307-27. PubMed ID: 20887736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphic design of DNA origami structures through mechanical control of modular components.
    Lee C; Lee JY; Kim DN
    Nat Commun; 2017 Dec; 8(1):2067. PubMed ID: 29233997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping of 3D DNA-origami shapes with caDNAno.
    Douglas SM; Marblestone AH; Teerapittayanon S; Vazquez A; Church GM; Shih WM
    Nucleic Acids Res; 2009 Aug; 37(15):5001-6. PubMed ID: 19531737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel Functionalization of DNA Origami.
    Thomsen RP; Sørensen RS; Kjems J
    Methods Mol Biol; 2023; 2639():175-194. PubMed ID: 37166718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of DNA-Origami Self-Assembly Reveal Design-Dependent Nucleation Barriers.
    Cumberworth A; Frenkel D; Reinhardt A
    Nano Lett; 2022 Sep; 22(17):6916-6922. PubMed ID: 36037484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of DNA into nanoscale three-dimensional shapes.
    Douglas SM; Dietz H; Liedl T; Högberg B; Graf F; Shih WM
    Nature; 2009 May; 459(7245):414-8. PubMed ID: 19458720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Induced Symmetry Conversion of DNA Origami Lattices.
    Wang Y; Yan X; Zhou Z; Ma N; Tian Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202208290. PubMed ID: 35934673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.