These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36893425)

  • 1. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery.
    Li X; He Y; Zhang S; Gu Q; McClements DJ; Chen S; Liu X; Liu F
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18166-18181. PubMed ID: 36893425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG.
    Yan X; Zhang X; McClements DJ; Zou L; Liu X; Liu F
    J Agric Food Chem; 2019 Dec; 67(48):13228-13236. PubMed ID: 31610115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.
    Yan JK; Qiu WY; Wang YY; Wu JY
    J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7,8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility.
    Chen Y; Zhao Z; Xia G; Xue F; Chen C; Zhang Y
    Int J Biol Macromol; 2020 Mar; 146():179-192. PubMed ID: 31899246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery.
    Pujara N; Giri R; Wong KY; Qu Z; Rewatkar P; Moniruzzaman M; Begun J; Ross BP; McGuckin M; Popat A
    J Colloid Interface Sci; 2021 May; 589():45-55. PubMed ID: 33450459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility.
    Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y
    Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the stability and oral bioavailability of curcumin loaded (-)-epigallocatechin-3-gallate/poly(N-vinylpyrrolidone) nanoparticles based on hydrogen bonding-driven self-assembly.
    Chen Y; Wang J; Rao Z; Hu J; Wang Q; Sun Y; Lei X; Zhao J; Zeng K; Xu Z; Ming J
    Food Chem; 2022 Jun; 378():132091. PubMed ID: 35032808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of the anticancer activity of curcumin based on a metal-polyphenol networks delivery system.
    Chen Y; Jia D; Wang Q; Sun Y; Rao Z; Lei X; Zhao J; Zeng K; Xu Z; Ming J
    Int J Pharm; 2021 Jun; 602():120650. PubMed ID: 33957265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method.
    Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y
    J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin.
    Wang Y; Jiang W; Jiang Y; Julian McClements D; Liu F; Liu X
    Food Chem; 2022 Sep; 387():132790. PubMed ID: 35421649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of sorghum arabinoxylan-soy protein isolate composite nanoparticles for delivery of curcumin: Effect of polysaccharide content on stability and in vitro digestibility.
    Yan J; Jia X; Qu Y; Yan W; Li Y; Yin L
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):129867. PubMed ID: 38309400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis treatment.
    Ye N; Zhao P; Ayue S; Qi S; Ye Y; He H; Dai L; Luo R; Chang D; Gao F
    Int J Biol Macromol; 2023 Mar; 232():123229. PubMed ID: 36642354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility.
    Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z
    J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of novel TGase-mediated glycosylated whey protein isolate nanoparticles for curcumin delivery.
    Li D; Jiang Y; Shi J
    Food Chem; 2024 Dec; 461():140957. PubMed ID: 39182336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curcumin, a potent therapeutic nutraceutical and its enhanced delivery and bioaccessibility by pickering emulsions.
    Saffarionpour S; Diosady LL
    Drug Deliv Transl Res; 2022 Jan; 12(1):124-157. PubMed ID: 33677795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles.
    Wu J; Chen J; Wei Z; Zhu P; Li B; Qing Q; Chen H; Lin W; Lin J; Hong X; Yu F; Chen X
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of Curcumin in a Ternary Nanocomplex Prepared with Carboxymethyl Short Linear Glucan-Sodium-Caseinate-Pectin Via Electrostatic Interactions.
    Li W; Yu Y; Dai Z; Peng J; Wu J; Wang Z
    J Food Sci; 2022 Feb; 87(2):780-794. PubMed ID: 35040140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native and thermally modified protein-polyphenol coassemblies: lactoferrin-based nanoparticles and submicrometer particles as protective vehicles for (-)-epigallocatechin-3-gallate.
    Yang W; Xu C; Liu F; Yuan F; Gao Y
    J Agric Food Chem; 2014 Nov; 62(44):10816-27. PubMed ID: 25310084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.