These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36893439)

  • 41. Controllable and facile fabrication of gold nanostructures for selective metal-assisted etching of silicon.
    Zhang X; Zhu J; Huang X; Qian Q; He Y; Chi L; Wang Y
    Small; 2014 Jun; 10(12):2451-8. PubMed ID: 24599660
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Approaching the ideal elastic strain limit in silicon nanowires.
    Zhang H; Tersoff J; Xu S; Chen H; Zhang Q; Zhang K; Yang Y; Lee CS; Tu KN; Li J; Lu Y
    Sci Adv; 2016 Aug; 2(8):e1501382. PubMed ID: 27540586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical characteristics of metal catalyst-assisted etched rough silicon nanowire depending on the diameter size.
    Lee SH; Lee TI; Lee SJ; Lee SM; Yun I; Myoung JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):929-34. PubMed ID: 25526518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal assisted chemical etching of silicon in the gas phase: a nanofabrication platform for X-ray optics.
    Romano L; Kagias M; Vila-Comamala J; Jefimovs K; Tseng LT; Guzenko VA; Stampanoni M
    Nanoscale Horiz; 2020 May; 5(5):869-879. PubMed ID: 32100775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.
    Otte MA; Solis-Tinoco V; Prieto P; Borrisé X; Lechuga LM; González MU; Sepulveda B
    Small; 2015 Sep; 11(33):4201-8. PubMed ID: 26033973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Curved silicon nanowires with ribbon-like cross sections by metal-assisted chemical etching.
    Kim J; Kim YH; Choi SH; Lee W
    ACS Nano; 2011 Jun; 5(6):5242-8. PubMed ID: 21557544
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.
    Balasundaram K; Sadhu JS; Shin JC; Azeredo B; Chanda D; Malik M; Hsu K; Rogers JA; Ferreira P; Sinha S; Li X
    Nanotechnology; 2012 Aug; 23(30):305304. PubMed ID: 22781120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of a sub-10 nm silicon nanowire based ethanol sensor using block copolymer lithography.
    Rasappa S; Borah D; Faulkner CC; Lutz T; Shaw MT; Holmes JD; Morris MA
    Nanotechnology; 2013 Feb; 24(6):065503. PubMed ID: 23340158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Device fabrication with solid-liquid-solid grown silicon nanowires.
    Lee EK; Choi BL; Park YD; Kuk Y; Kwon SY; Kim HJ
    Nanotechnology; 2008 May; 19(18):185701. PubMed ID: 21825697
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of ultra-thin silicon nanowire arrays using ion beam assisted chemical etching.
    Tan Z; Shi W; Guo C; Zhang Q; Yang L; Wu X; Cheng GA; Zheng R
    Nanoscale; 2015 Nov; 7(41):17268-73. PubMed ID: 26440414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles.
    Chen H; Wang H; Zhang XH; Lee CS; Lee ST
    Nano Lett; 2010 Mar; 10(3):864-8. PubMed ID: 20104856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and Optical Properties of Silicon Nanowire Arrays Fabricated by Metal Assisted Chemical Etching With Ammonium Fluoride.
    Gonchar KA; Kitaeva VY; Zharik GA; Eliseev AA; Osminkina LA
    Front Chem; 2018; 6():653. PubMed ID: 30662894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies.
    Fang Y; Jiang Y; Cherukara MJ; Shi F; Koehler K; Freyermuth G; Isheim D; Narayanan B; Nicholls AW; Seidman DN; Sankaranarayanan SKRS; Tian B
    Nat Commun; 2017 Dec; 8(1):2014. PubMed ID: 29222439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir.
    Franz M; Junghans R; Schmitt P; Szeghalmi A; Schulz SE
    Beilstein J Nanotechnol; 2020; 11():1439-1449. PubMed ID: 33029473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing the impact of silicon nanowires on bacterial transformation and viability of
    Becce M; Klöckner A; Higgins SG; Penders J; Hachim D; Bashor CJ; Edwards AM; Stevens MM
    J Mater Chem B; 2021 Jun; 9(24):4906-4914. PubMed ID: 34100486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography.
    Li L; Fang Y; Xu C; Zhao Y; Wu K; Limburg C; Jiang P; Ziegler KJ
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7368-7375. PubMed ID: 28067037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A route for the top-down fabrication of ordered ultrathin GaN nanowires.
    Oliva M; Kaganer V; Pudelski M; Meister S; Tahraoui A; Geelhaar L; Brandt O; Auzelle T
    Nanotechnology; 2023 Mar; 34(20):. PubMed ID: 36745915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.
    Becker M; Sivakov V; Andrä G; Geiger R; Schreiber J; Hoffmann S; Michler J; Milenin AP; Werner P; Christiansen SH
    Nano Lett; 2007 Jan; 7(1):75-80. PubMed ID: 17212443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-density silicon nanowires prepared via a two-step template method.
    Teng D; Wu L; He W; Ye C
    Langmuir; 2014 Mar; 30(8):2259-65. PubMed ID: 24511908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser direct synthesis of silicon nanowire field effect transistors.
    Nam W; Mitchell JI; Ye PD; Xu X
    Nanotechnology; 2015 Feb; 26(5):055306. PubMed ID: 25590692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.