These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36893446)

  • 1. Technical note: Dose voxel resolution determination for Monte Carlo electron beam simulation in thin targets.
    Insley BA; Bartkoski DA; Salehpour MR
    Med Phys; 2023 Jul; 50(7):4637-4644. PubMed ID: 36893446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance.
    Winterhalter C; Taylor M; Boersma D; Elia A; Guatelli S; Mackay R; Kirkby K; Maigne L; Ivanchenko V; Resch AF; Sarrut D; Sitch P; Vidal M; Grevillot L; Aitkenhead A
    Med Phys; 2020 Nov; 47(11):5817-5828. PubMed ID: 32967037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
    Kaluarachchi MM; Saleh ZH; Schwer ML; Klein EE
    Med Phys; 2020 Aug; 47(8):3586-3599. PubMed ID: 32324289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation transport calculations for 50 MV photon therapy beam using the Monte Carlo code GEANT4.
    Larsson S; Svensson R; Gudowska I; Ivanchenko V; Brahme A
    Radiat Prot Dosimetry; 2005; 115(1-4):503-7. PubMed ID: 16381775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
    Bartzsch S; Oelfke U
    Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation.
    Yang J; Li JS; Qin L; Xiong W; Ma CM
    Phys Med Biol; 2004 Jun; 49(12):2657-73. PubMed ID: 15272680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications.
    Franciosini G; Battistoni G; Cerqua A; De Gregorio A; De Maria P; De Simoni M; Dong Y; Fischetti M; Marafini M; Mirabelli R; Muscato A; Patera V; Salvati F; Sarti A; Sciubba A; Toppi M; Traini G; Trigilio A; Schiavi A
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36356308
    [No Abstract]   [Full Text] [Related]  

  • 14. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software.
    Tabor Z; Kabat D; Waligórski MPR
    Radiat Oncol; 2021 Jun; 16(1):124. PubMed ID: 34187495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an EGSnrc-based Monte Carlo model for a complex 2D-array for technical QA measurements of a linear accelerator.
    Czarnecki D; Zink K; Alissa M; Flatten V; Espelage T; Schoenfeld AA
    Med Phys; 2023 Apr; 50(4):2552-2559. PubMed ID: 36604950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.