These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36893457)

  • 1. Directional emission of nanoscale chiral sources modified by gap plasmons.
    Lin H; Wen T; Tang J; Ye L; Zhang G; Zhang W; Gu Y; Gong Q; Lu G
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36893457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Purcell enhancement with nanoscale non-reciprocal photon transmission in chiral gap-plasmon-emitter systems.
    Shan L; Zhang F; Ren J; Zhang Q; Gong Q; Gu Y
    Opt Express; 2020 Nov; 28(23):33890-33899. PubMed ID: 33182868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation and localization of quantum dot emission along a gap-plasmonic transmission line.
    Castro-Lopez M; Manjavacas A; García de Abajo J; van Hulst NF
    Opt Express; 2015 Nov; 23(23):29296-320. PubMed ID: 26698415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire-nanorod system.
    Duan X; Ren J; Zhang F; Hao H; Lu G; Gong Q; Gu Y
    Nanotechnology; 2018 Jan; 29(4):045203. PubMed ID: 29144283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron energy-loss spectroscopy of branched gap plasmon resonators.
    Raza S; Esfandyarpour M; Koh AL; Mortensen NA; Brongersma ML; Bozhevolnyi SI
    Nat Commun; 2016 Dec; 7():13790. PubMed ID: 27982030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale chiral valley-photon interface through optical spin-orbit coupling.
    Gong SH; Alpeggiani F; Sciacca B; Garnett EC; Kuipers L
    Science; 2018 Jan; 359(6374):443-447. PubMed ID: 29371466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range directional transport of valley information from transition metal dichalcogenides via a dielectric waveguide.
    Woo A; Sung J; Gong SH
    Opt Express; 2021 Mar; 29(7):10688-10697. PubMed ID: 33820198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic photon-emitter coupling in chiral photonic circuits.
    Söllner I; Mahmoodian S; Hansen SL; Midolo L; Javadi A; Kiršanskė G; Pregnolato T; El-Ella H; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Nanotechnol; 2015 Sep; 10(9):775-8. PubMed ID: 26214251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions.
    Herzog JB; Knight MW; Li Y; Evans KM; Halas NJ; Natelson D
    Nano Lett; 2013 Mar; 13(3):1359-64. PubMed ID: 23398028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral light-matter interactions using spin-valley states in transition metal dichalcogenides.
    Yang Z; Aghaeimeibodi S; Waks E
    Opt Express; 2019 Jul; 27(15):21367-21379. PubMed ID: 31510216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Plasmons with Twisted Atomic Bilayers.
    Lin X; Liu Z; Stauber T; Gómez-Santos G; Gao F; Chen H; Zhang B; Low T
    Phys Rev Lett; 2020 Aug; 125(7):077401. PubMed ID: 32857562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient single photon emission and collection based on excitation of gap surface plasmons.
    Lian H; Gu Y; Ren J; Zhang F; Wang L; Gong Q
    Phys Rev Lett; 2015 May; 114(19):193002. PubMed ID: 26024170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral modes and directional lasing at exceptional points.
    Peng B; Özdemir ŞK; Liertzer M; Chen W; Kramer J; Yılmaz H; Wiersig J; Rotter S; Yang L
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6845-50. PubMed ID: 27274059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient directional excitation of surface plasmons by a single-element nanoantenna.
    Yao W; Liu S; Liao H; Li Z; Sun C; Chen J; Gong Q
    Nano Lett; 2015 May; 15(5):3115-21. PubMed ID: 25848855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna.
    Cazier N; Buret M; Uskov AV; Markey L; Arocas J; Colas Des Francs G; Bouhelier A
    Opt Express; 2016 Feb; 24(4):3873-84. PubMed ID: 26907040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoluminescence via gap plasmons between single silver nanowires and a thin gold film.
    Hu H; Akimov YA; Duan H; Li X; Liao M; Tan RL; Wu L; Chen H; Fan H; Bai P; Lee PS; Yang JK; Shen ZX
    Nanoscale; 2013 Dec; 5(24):12086-91. PubMed ID: 24132325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact spin-valley-locked perovskite emission.
    Chen Y; Feng J; Huang Y; Chen W; Su R; Ghosh S; Hou Y; Xiong Q; Qiu CW
    Nat Mater; 2023 Sep; 22(9):1065-1070. PubMed ID: 37081172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber.
    Tuniz A; Chemnitz M; Dellith J; Weidlich S; Schmidt MA
    Nano Lett; 2017 Feb; 17(2):631-637. PubMed ID: 27983862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.