These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36893670)

  • 1. Traffic conflict assessment using macroscopic traffic flow variables: A novel framework for real-time applications.
    Gore N; Chauhan R; Easa S; Arkatkar S
    Accid Anal Prev; 2023 Jun; 185():107020. PubMed ID: 36893670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time conflict-based Bayesian Tobit models for safety evaluation of signalized intersections.
    Guo Y; Sayed T; Essa M
    Accid Anal Prev; 2020 Sep; 144():105660. PubMed ID: 32623321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of explainable machine learning for real-time safety analysis toward a connected vehicle environment.
    Yuan C; Li Y; Huang H; Wang S; Sun Z; Wang H
    Accid Anal Prev; 2022 Jun; 171():106681. PubMed ID: 35468530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposing an effective approach for traffic safety assessment on heterogeneous traffic conditions using surrogate safety measures and speed of the involved vehicles.
    Hasain NM; Ahmed MA
    Traffic Inj Prev; 2024; 25(2):219-227. PubMed ID: 38085579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach of machine learning and Bayesian spatial Poisson model for large-scale real-time traffic conflict prediction.
    Li D; Fu C; Sayed T; Wang W
    Accid Anal Prev; 2023 Nov; 192():107286. PubMed ID: 37690284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting real-time traffic conflicts using deep learning.
    Formosa N; Quddus M; Ison S; Abdel-Aty M; Yuan J
    Accid Anal Prev; 2020 Mar; 136():105429. PubMed ID: 31931409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on diversion behavior in weaving segments: Individualized traffic conflict prediction and causal mechanism analysis.
    Yuan R; Abdel-Aty M; Xiang Q
    Accid Anal Prev; 2024 Sep; 205():107681. PubMed ID: 38897142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel traffic conflict risk measure considering the effect of vehicle weight.
    Wang Y; Tu H; Sze NN; Li H; Ruan X
    J Safety Res; 2022 Feb; 80():1-13. PubMed ID: 35249592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of traffic conflicts using precise lateral position and width of vehicles for safety assessment.
    Charly A; Mathew TV
    Accid Anal Prev; 2019 Nov; 132():105264. PubMed ID: 31450115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-resolution trajectory data driven method for real-time evaluation of traffic safety.
    Hu Y; Li Y; Huang H; Lee J; Yuan C; Zou G
    Accid Anal Prev; 2022 Feb; 165():106503. PubMed ID: 34863526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatio-temporal deep learning approach to simulating conflict risk propagation on freeways with trajectory data.
    Wang T; Ge YE; Wang Y; Chen W
    Accid Anal Prev; 2024 Feb; 195():107377. PubMed ID: 37984114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Vehicle Trajectory Deviation Characteristics on Freeways Using Natural Driving Trajectory Data.
    Dai Z; Pan C; Xiong W; Ding R; Zhang H; Xu J
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycle-level traffic conflict prediction at signalized intersections with LiDAR data and Bayesian deep learning.
    Wu P; Wei W; Zheng L; Hu Z; Essa M
    Accid Anal Prev; 2023 Nov; 192():107268. PubMed ID: 37651856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time signal-vehicle coupled control: An application of connected vehicle data to improve intersection safety.
    Ghoul T; Sayed T
    Accid Anal Prev; 2021 Nov; 162():106389. PubMed ID: 34560507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of right-turn vehicular driving paths at uncontrolled T-intersections.
    Bonela SR; Kadali BR
    Int J Inj Contr Saf Promot; 2023 Mar; 30(1):91-105. PubMed ID: 35997794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying significant predictors of head-on conflicts on two-lane rural roads using inductive loop detectors data.
    Shariat-Mohaymany A; Tavakoli-Kashani A; Nosrati H; Ranjbari A
    Traffic Inj Prev; 2011 Dec; 12(6):636-41. PubMed ID: 22133341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining traffic conflicts of up stream toll plaza area using vehicles' trajectory data.
    Xing L; He J; Abdel-Aty M; Cai Q; Li Y; Zheng O
    Accid Anal Prev; 2019 Apr; 125():174-187. PubMed ID: 30771587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing autonomous vehicle hyperawareness in busy traffic environments: A machine learning approach.
    Alozi AR; Hussein M
    Accid Anal Prev; 2024 Apr; 198():107458. PubMed ID: 38277854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.