BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36893677)

  • 21. The synthesis of switch-off fluorescent water-stable copper nanocluster Hg
    Benavides J; Quijada-Garrido I; García O
    Nanoscale; 2020 Jan; 12(2):944-955. PubMed ID: 31840709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg
    Luo T; Zhang S; Wang Y; Wang M; Liao M; Kou X
    Luminescence; 2017 Sep; 32(6):1092-1099. PubMed ID: 28417589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of copper nanoclusters from Bacopa monnieri leaves for fluorescence sensing of dichlorvos.
    Sadhu VA; Jha S; Park TJ; Kailasa SK
    Luminescence; 2023 Nov; 38(11):1872-1882. PubMed ID: 37555766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters.
    Wang HB; Mao AL; Li YH; Gan T; Liu YM
    Luminescence; 2020 Dec; 35(8):1296-1303. PubMed ID: 32510805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 'Turn-off' fluorescence strategy for determination of hexavalent chromium ions based on copper nanoclusters.
    Cao X; Bai Y; Liu F; Li F; Luo Y
    Luminescence; 2021 Feb; 36(1):229-236. PubMed ID: 32841499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine.
    Gu Z; Cao Z
    Anal Bioanal Chem; 2018 Aug; 410(20):4991-4999. PubMed ID: 29882076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper nanoclusters as fluorescence-quenching probes for the quantitative analysis of total iodine.
    Cao X; Li X; Liu F; Luo Y; Yu L
    Luminescence; 2018 Aug; 33(5):981-985. PubMed ID: 29790654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters.
    Fan Y; Yu W; Liao Y; Jiang X; Wang Z; Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 1):120509. PubMed ID: 34688060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold nanoparticle probes for the detection of mercury, lead and copper ions.
    Lin YW; Huang CC; Chang HT
    Analyst; 2011 Mar; 136(5):863-71. PubMed ID: 21157604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.
    Li H; Chang J; Hou T; Ge L; Li F
    Talanta; 2016 Nov; 160():475-480. PubMed ID: 27591641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for "on-off-on" bifunctional detection and cellular imaging of mercury (II) ions and cysteine.
    Ru F; Du P; Lu X
    Anal Chim Acta; 2020 Apr; 1105():139-146. PubMed ID: 32138912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity.
    Huang X; Chen H; Huang R; Shi Y; Ye R; Qiu B
    Mikrochim Acta; 2023 Dec; 191(1):54. PubMed ID: 38151694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions.
    Xie J; Zheng Y; Ying JY
    Chem Commun (Camb); 2010 Feb; 46(6):961-3. PubMed ID: 20107664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-free detection of miRNA cancer markers based on terminal deoxynucleotidyl transferase-induced copper nanoclusters.
    Li Y; Tang D; Zhu L; Cai J; Chu C; Wang J; Xia M; Cao Z; Zhu H
    Anal Biochem; 2019 Nov; 585():113346. PubMed ID: 31401004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon dots-based fluorescent probe for "off-on" sensing of Hg(II) and I⁻.
    He J; Zhang H; Zou J; Liu Y; Zhuang J; Xiao Y; Lei B
    Biosens Bioelectron; 2016 May; 79():531-5. PubMed ID: 26748370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-pot synthesis of copper nanocluster/Tb-MOF composites for the ratiometric fluorescence detection of Cu
    Liu P; Hao R; Sun W; Lin Z; Jing T
    Luminescence; 2022 Oct; 37(10):1793-1799. PubMed ID: 35946061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging.
    Li Y; Feng L; Yan W; Hussain I; Su L; Tan B
    Nanoscale; 2019 Jan; 11(3):1286-1294. PubMed ID: 30603761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Liu Y
    Mikrochim Acta; 2020 Nov; 187(12):672. PubMed ID: 33225389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA-templated silver nanoclusters light up tryptophan for combined detection of plasma tryptophan and albumin in sepsis.
    Zhang J; Pan L; Wang Y; Yin L; Xu L; Tao J; Zhang L; Zhu Z; Cui D; Li F; Liu TF
    Anal Chim Acta; 2022 Jun; 1213():339925. PubMed ID: 35641062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper nanoclusters capped with tannic acid as a fluorescent probe for real-time determination of the activity of pyrophosphatase.
    Liu Q; Lai Q; Li N; Su X
    Mikrochim Acta; 2018 Feb; 185(3):182. PubMed ID: 29594686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.