BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36893688)

  • 1. Tri-layered constitutive modelling unveils functional differences between the pig ascending and lower thoracic aorta.
    Giudici A; Spronck B; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2023 May; 141():105752. PubMed ID: 36893688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework.
    Giudici A; Khir AW; Szafron JM; Spronck B
    Ann Biomed Eng; 2021 Sep; 49(9):2454-2467. PubMed ID: 34081251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta.
    Peña JA; Cilla M; Martínez MA; Peña E
    J Biomech; 2022 Feb; 132():110909. PubMed ID: 35032837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
    Amabili M; Balasubramanian P; Bozzo I; Breslavsky ID; Ferrari G
    J Mech Behav Biomed Mater; 2019 Nov; 99():27-46. PubMed ID: 31330442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-course of the human thoracic aorta ageing process assessed using uniaxial mechanical testing and constitutive modelling.
    Giudici A; Li Y; Yasmin ; Cleary S; Connolly K; McEniery C; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2022 Oct; 134():105339. PubMed ID: 35868063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-layer model of coronary artery vasoactivity.
    Huo Y; Zhao X; Cheng Y; Lu X; Kassab GS
    J Appl Physiol (1985); 2013 May; 114(10):1451-9. PubMed ID: 23471951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-Specific Residual Deformations and Their Variation Along the Human Aorta.
    Sokolis DP; Gouskou N; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Location specific multi-scale characterization and constitutive modeling of pig aorta.
    Dwivedi KK; Lakhani P; Yadav A; Deepak ; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2023 Jun; 142():105809. PubMed ID: 37116311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual strains in ascending thoracic aortic aneurysms: The effect of valve type, layer, and circumferential quadrant.
    Sokolis DP; Ch Markidi D; Iliopoulos DC; Kourkoulis SK
    J Biomech; 2023 Jan; 147():111432. PubMed ID: 36634401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.
    Peña JA; Corral V; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2018 Jan; 77():434-445. PubMed ID: 29024895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach.
    Peña JA; Martínez MA; Peña E
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1709-1730. PubMed ID: 31123879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of anisotropic stress/strain relationships of the piglet great vessels and relevance to pediatric congenital heart disease.
    Jia Y; Argueta-Morales IR; Liu M; Bai Y; Divo E; Kassab AJ; DeCampli WM
    Ann Thorac Surg; 2015 Apr; 99(4):1399-407. PubMed ID: 25681872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.