These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36893713)

  • 1. Recover value metals from spent lithium-ion batteries via a combination of in-situ reduction pretreatment and facile acid leaching.
    Zhang Y; Yu M; Guo J; Liu S; Song H; Wu W; Zheng C; Gao X
    Waste Manag; 2023 Apr; 161():193-202. PubMed ID: 36893713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries.
    Pei S; Yan S; Chen X; Li J; Xu J
    Waste Manag; 2024 Nov; 188():1-10. PubMed ID: 39084179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO
    Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S
    J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feasible process for recycling valuable metals from LiNi
    Liu DY; Sun SN; Li DY
    Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleaner separation and recovery of valuable metals from spent ternary cathode via carbon dioxide synergetic thermite reduction strategy.
    Yang C; Wang Q; Xu L; Tian Y; Zhao Z
    J Environ Manage; 2024 Aug; 366():121853. PubMed ID: 39018851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency selective leaching of valuable metals from spent lithium-ion batteries: Effects of Na
    Hu Q; Luo Z; Zhou H; Cao Z
    Waste Manag; 2023 Jul; 167():204-212. PubMed ID: 37269584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal phase and nanoscale size regulation utilizing the in-situ catalytic pyrolysis of bamboo sawdust in the recycling of spent lithium batteries.
    Chen Q; Zhang X; Cheng R; Shi H; Pei Y; Yang J; Zhao Q; Zhao X; Wu F
    Waste Manag; 2024 Jun; 182():186-196. PubMed ID: 38670002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.