These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36893914)

  • 1. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit.
    Chen J; Tan J; Duan X; Wang Y; Wen J; Li W; Li Z; Wang G; Xu H
    Metab Eng; 2023 May; 77():41-52. PubMed ID: 36893914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
    Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N
    Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits.
    Gutensohn M; Henry LK; Gentry SA; Lynch JH; Nguyen TTH; Pichersky E; Dudareva N
    Front Plant Sci; 2021; 12():691754. PubMed ID: 34220915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit.
    Davidovich-Rikanati R; Lewinsohn E; Bar E; Iijima Y; Pichersky E; Sitrit Y
    Plant J; 2008 Oct; 56(2):228-238. PubMed ID: 18643974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.
    May B; Lange BM; Wüst M
    Phytochemistry; 2013 Nov; 95():135-44. PubMed ID: 23954075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.
    Gutensohn M; Dudareva N
    Methods Enzymol; 2016; 576():333-59. PubMed ID: 27480692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.
    Botella-Pavía P; Besumbes O; Phillips MA; Carretero-Paulet L; Boronat A; Rodríguez-Concepción M
    Plant J; 2004 Oct; 40(2):188-99. PubMed ID: 15447646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening.
    Rodríguez-Concepción M; Ahumada I; Diez-Juez E; Sauret-Güeto S; Lois LM; Gallego F; Carretero-Paulet L; Campos N; Boronat A
    Plant J; 2001 Aug; 27(3):213-22. PubMed ID: 11532167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites.
    Kortbeek RW; Xu J; Ramirez A; Spyropoulou E; Diergaarde P; Otten-Bruggeman I; de Both M; Nagel R; Schmidt A; Schuurink RC; Bleeker PM
    Methods Enzymol; 2016; 576():305-31. PubMed ID: 27480691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis.
    Pankratov I; McQuinn R; Schwartz J; Bar E; Fei Z; Lewinsohn E; Zamir D; Giovannoni JJ; Hirschberg J
    Plant J; 2016 Oct; 88(1):82-94. PubMed ID: 27288653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.
    Fraser PD; Enfissi EM; Halket JM; Truesdale MR; Yu D; Gerrish C; Bramley PM
    Plant Cell; 2007 Oct; 19(10):3194-211. PubMed ID: 17933904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Validation of Phytoene Synthase and Lycopene ε-Cyclase Genes for High Lycopene Content in Autumn Olive Fruit (
    Wang T; Hou Y; Hu H; Wang C; Zhang W; Li H; Cheng Z; Yang L
    J Agric Food Chem; 2020 Oct; 68(41):11503-11511. PubMed ID: 32936623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.
    Lois LM; Rodríguez-Concepción M; Gallego F; Campos N; Boronat A
    Plant J; 2000 Jun; 22(6):503-13. PubMed ID: 10886770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase.
    Rubat S; Varas I; Sepúlveda R; Almonacid D; González-Nilo F; Agosin E
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28854674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites.
    Sallaud C; Rontein D; Onillon S; Jabès F; Duffé P; Giacalone C; Thoraval S; Escoffier C; Herbette G; Leonhardt N; Causse M; Tissier A
    Plant Cell; 2009 Jan; 21(1):301-17. PubMed ID: 19155349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties.
    Enfissi EMA; Nogueira M; D'Ambrosio C; Stigliani AL; Giorio G; Misawa N; Fraser PD
    Plant Biotechnol J; 2019 Aug; 17(8):1501-1513. PubMed ID: 30623551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit.
    Xu H; Lybrand D; Bennewitz S; Tissier A; Last RL; Pichersky E
    Metab Eng; 2018 May; 47():271-278. PubMed ID: 29649589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit.
    Fu L; Chen Q; Li Y; Li Y; Pang X; Zhang Z; Fang F
    Physiol Plant; 2024; 176(5):e14559. PubMed ID: 39377160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases.
    Kang JH; Gonzales-Vigil E; Matsuba Y; Pichersky E; Barry CS
    Plant Physiol; 2014 Jan; 164(1):80-91. PubMed ID: 24254315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes.
    Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J
    Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.