BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36893914)

  • 1. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit.
    Chen J; Tan J; Duan X; Wang Y; Wen J; Li W; Li Z; Wang G; Xu H
    Metab Eng; 2023 May; 77():41-52. PubMed ID: 36893914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
    Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N
    Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming Bottlenecks for Metabolic Engineering of Sesquiterpene Production in Tomato Fruits.
    Gutensohn M; Henry LK; Gentry SA; Lynch JH; Nguyen TTH; Pichersky E; Dudareva N
    Front Plant Sci; 2021; 12():691754. PubMed ID: 34220915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit.
    Davidovich-Rikanati R; Lewinsohn E; Bar E; Iijima Y; Pichersky E; Sitrit Y
    Plant J; 2008 Oct; 56(2):228-238. PubMed ID: 18643974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.
    May B; Lange BM; Wüst M
    Phytochemistry; 2013 Nov; 95():135-44. PubMed ID: 23954075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.
    Gutensohn M; Dudareva N
    Methods Enzymol; 2016; 576():333-59. PubMed ID: 27480692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.
    Botella-Pavía P; Besumbes O; Phillips MA; Carretero-Paulet L; Boronat A; Rodríguez-Concepción M
    Plant J; 2004 Oct; 40(2):188-99. PubMed ID: 15447646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening.
    Rodríguez-Concepción M; Ahumada I; Diez-Juez E; Sauret-Güeto S; Lois LM; Gallego F; Carretero-Paulet L; Campos N; Boronat A
    Plant J; 2001 Aug; 27(3):213-22. PubMed ID: 11532167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites.
    Kortbeek RW; Xu J; Ramirez A; Spyropoulou E; Diergaarde P; Otten-Bruggeman I; de Both M; Nagel R; Schmidt A; Schuurink RC; Bleeker PM
    Methods Enzymol; 2016; 576():305-31. PubMed ID: 27480691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis.
    Pankratov I; McQuinn R; Schwartz J; Bar E; Fei Z; Lewinsohn E; Zamir D; Giovannoni JJ; Hirschberg J
    Plant J; 2016 Oct; 88(1):82-94. PubMed ID: 27288653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.
    Fraser PD; Enfissi EM; Halket JM; Truesdale MR; Yu D; Gerrish C; Bramley PM
    Plant Cell; 2007 Oct; 19(10):3194-211. PubMed ID: 17933904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Validation of Phytoene Synthase and Lycopene ε-Cyclase Genes for High Lycopene Content in Autumn Olive Fruit (
    Wang T; Hou Y; Hu H; Wang C; Zhang W; Li H; Cheng Z; Yang L
    J Agric Food Chem; 2020 Oct; 68(41):11503-11511. PubMed ID: 32936623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase.
    Lois LM; Rodríguez-Concepción M; Gallego F; Campos N; Boronat A
    Plant J; 2000 Jun; 22(6):503-13. PubMed ID: 10886770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase.
    Rubat S; Varas I; Sepúlveda R; Almonacid D; González-Nilo F; Agosin E
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28854674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites.
    Sallaud C; Rontein D; Onillon S; Jabès F; Duffé P; Giacalone C; Thoraval S; Escoffier C; Herbette G; Leonhardt N; Causse M; Tissier A
    Plant Cell; 2009 Jan; 21(1):301-17. PubMed ID: 19155349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties.
    Enfissi EMA; Nogueira M; D'Ambrosio C; Stigliani AL; Giorio G; Misawa N; Fraser PD
    Plant Biotechnol J; 2019 Aug; 17(8):1501-1513. PubMed ID: 30623551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit.
    Xu H; Lybrand D; Bennewitz S; Tissier A; Last RL; Pichersky E
    Metab Eng; 2018 May; 47():271-278. PubMed ID: 29649589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases.
    Kang JH; Gonzales-Vigil E; Matsuba Y; Pichersky E; Barry CS
    Plant Physiol; 2014 Jan; 164(1):80-91. PubMed ID: 24254315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes.
    Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J
    Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development.
    Gaffe J; Bru JP; Causse M; Vidal A; Stamitti-Bert L; Carde JP; Gallusci P
    Plant Physiol; 2000 Aug; 123(4):1351-62. PubMed ID: 10938353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.