These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36894059)
1. 3D-bioprinted double-crosslinked angiogenic alginate/chondroitin sulfate patch for diabetic wound healing. Liao W; Duan X; Xie F; Zheng D; Yang P; Wang X; Hu Z Int J Biol Macromol; 2023 May; 236():123952. PubMed ID: 36894059 [TBL] [Abstract][Full Text] [Related]
2. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
3. 3D-bioprinted peptide coupling patches for wound healing. Guan G; Qizhuang Lv ; Liu S; Jiang Z; Zhou C; Liao W Mater Today Bio; 2022 Jan; 13():100188. PubMed ID: 34977527 [TBL] [Abstract][Full Text] [Related]
4. Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Xiong X; Xiao W; Zhou S; Cui R; Xu HHK; Qu S Biomed Mater; 2021 Feb; 16(2):025012. PubMed ID: 33412523 [TBL] [Abstract][Full Text] [Related]
5. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Shah SA; Sohail M; Khan SA; Kousar M Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112169. PubMed ID: 34082970 [TBL] [Abstract][Full Text] [Related]
6. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
7. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Chawla D; Kaur T; Joshi A; Singh N Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163 [TBL] [Abstract][Full Text] [Related]
10. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
11. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
12. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
13. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Amaral AJR; Gaspar VM; Lavrador P; Mano JF Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894 [TBL] [Abstract][Full Text] [Related]
14. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
15. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
16. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Lafuente-Merchan M; Ruiz-Alonso S; Zabala A; Gálvez-Martín P; Marchal JA; Vázquez-Lasa B; Gallego I; Saenz-Del-Burgo L; Pedraz JL Macromol Biosci; 2022 Mar; 22(3):e2100435. PubMed ID: 35029035 [TBL] [Abstract][Full Text] [Related]
17. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Park J; Lee SJ; Lee H; Park SA; Lee JY Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290 [TBL] [Abstract][Full Text] [Related]
18. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
19. Influence of ionic crosslinkers (Ca Sarker M; Izadifar M; Schreyer D; Chen X J Biomater Sci Polym Ed; 2018 Jul; 29(10):1126-1154. PubMed ID: 29376775 [TBL] [Abstract][Full Text] [Related]
20. 3D Bioprinting of Complex, Cell-laden Alginate Constructs. Tabriz AG; Cornelissen DJ; Shu W Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]