These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36894061)
1. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Yang Y; Lu K; Qian J; Guo J; Xu H; Lu Z Int J Biol Macromol; 2023 May; 237():123949. PubMed ID: 36894061 [TBL] [Abstract][Full Text] [Related]
2. Midgut transcriptomal response of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) to Cry1C toxin. Yang Y; Xu H; Lu Y; Wang C; Lu Z PLoS One; 2018; 13(1):e0191686. PubMed ID: 29360856 [TBL] [Abstract][Full Text] [Related]
3. Processing Properties and Potency of Yang Y; Wu Z; He X; Xu H; Lu Z Toxins (Basel); 2023 Apr; 15(4):. PubMed ID: 37104213 [TBL] [Abstract][Full Text] [Related]
4. Susceptibility and selectivity of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to different cry toxins. Yang Y; Xu H; Zheng X; Lu Z J Econ Entomol; 2012 Dec; 105(6):2122-8. PubMed ID: 23356078 [TBL] [Abstract][Full Text] [Related]
5. The overexpression of insect endogenous microRNA in transgenic rice inhibits the pupation of Chilo suppressalis and Cnaphalocrocis medinalis. Wen N; Chen J; Chen G; Du L; Chen H; Li Y; Peng Y; Yang X; Han L Pest Manag Sci; 2021 Sep; 77(9):3990-3999. PubMed ID: 33890699 [TBL] [Abstract][Full Text] [Related]
6. Differences in midgut transcriptomes between resistant and susceptible strains of Chilo suppressalis to Cry1C toxin. Chen G; Wang Y; Liu Y; Chen F; Han L BMC Genomics; 2020 Sep; 21(1):634. PubMed ID: 32928099 [TBL] [Abstract][Full Text] [Related]
7. Field evaluation of effects of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on Cnaphalocrocis medinalis and its arthropod predators. Xu X; Han Y; Wu G; Cai W; Yuan B; Wang H; Liu F; Wang M; Hua H Sci China Life Sci; 2011 Nov; 54(11):1019-28. PubMed ID: 22173308 [TBL] [Abstract][Full Text] [Related]
8. GLUTATHIONE S-TRANSFERASE Genes IN THE RICE LEAFFOLDER, Cnaphalocrocis medinalis (LEPIDOPTERA: PYRALIDAE): IDENTIFICATION AND EXPRESSION PROFILES. Liu S; Rao XJ; Li MY; Feng MF; He MZ; Li SG Arch Insect Biochem Physiol; 2015 Sep; 90(1):1-13. PubMed ID: 25917811 [TBL] [Abstract][Full Text] [Related]
9. Evidence of a shared binding site for Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Cnaphalocrocis medinalis cadherin. Zhong J; Fang S; Gao M; Lu L; Zhang X; Zhu Q; Liu Y; Jurat-Fuentes JL; Liu X Insect Mol Biol; 2022 Feb; 31(1):101-114. PubMed ID: 34637177 [TBL] [Abstract][Full Text] [Related]
10. Downregulation of the CsABCC2 gene is associated with Cry1C resistance in the striped stem borer Chilo suppressalis. Wang H; Zhang C; Chen G; Li Y; Yang X; Han L; Peng Y Pestic Biochem Physiol; 2022 Jun; 184():105119. PubMed ID: 35715058 [TBL] [Abstract][Full Text] [Related]
11. Baseline susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to Bacillus thuringiensis toxins in China. Han LZ; Liu PL; Hou ML; Peng YF J Econ Entomol; 2008 Oct; 101(5):1691-6. PubMed ID: 18950053 [TBL] [Abstract][Full Text] [Related]
12. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole. Sun Y; Liu ST; Ling Y; Wang L; Ni H; Guo D; Dong BB; Huang Q; Long LP; Zhang S; Wu SF; Gao CF Pest Manag Sci; 2023 Sep; 79(9):3290-3299. PubMed ID: 37127919 [TBL] [Abstract][Full Text] [Related]
13. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Yu HZ; Wen DF; Wang WL; Geng L; Zhang Y; Xu JP Int J Mol Sci; 2015 Sep; 16(9):21873-96. PubMed ID: 26378520 [TBL] [Abstract][Full Text] [Related]
14. Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. Zheng X; Ren X; Su J J Econ Entomol; 2011 Apr; 104(2):653-8. PubMed ID: 21510218 [TBL] [Abstract][Full Text] [Related]
15. A chromosome-level genome assembly of rice leaffolder, Cnaphalocrocis medinalis. Zhao X; Xu H; He K; Shi Z; Chen X; Ye X; Mei Y; Yang Y; Li M; Gao L; Xu L; Xiao H; Liu Y; Lu Z; Li F Mol Ecol Resour; 2021 Feb; 21(2):561-572. PubMed ID: 33051980 [TBL] [Abstract][Full Text] [Related]
16. Toxicity and receptor binding properties of Bacillus thuringiensis delta-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Karim S; Dean DH Curr Microbiol; 2000 Oct; 41(4):276-83. PubMed ID: 10977896 [TBL] [Abstract][Full Text] [Related]
17. Development and relative fitness of Cry1C resistance in Chilo suppressalis. Tang H; Chen G; Chen F; Han L; Peng Y Pest Manag Sci; 2018 Mar; 74(3):590-597. PubMed ID: 28941326 [TBL] [Abstract][Full Text] [Related]
18. Resistance performances of transgenic bt rice lines T(2A)-1 and T1c-19 against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Zheng X; Yang Y; Xu H; Chen H; Wang B; Lin Y; Lu Z J Econ Entomol; 2011 Oct; 104(5):1730-5. PubMed ID: 22066204 [TBL] [Abstract][Full Text] [Related]
19. [Occurrence dynamics of migratory pest insects Cnaphalocrocis medinalis and Sogatella furcifera in transgenic Bt rice field in Xing'an County of Guangxi Province]. Sui H; Li ZY; Xu YB; Han C; Han LZ; Chen FJ Ying Yong Sheng Tai Xue Bao; 2011 Nov; 22(11):3021-5. PubMed ID: 22303682 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenée). Han L; Wu K; Peng Y; Wang F; Guo Y J Invertebr Pathol; 2007 Sep; 96(1):71-9. PubMed ID: 17445827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]