These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36894065)
1. Characterization and 3D printing of a biodegradable polylactic acid/thermoplastic polyurethane blend with laccase-modified lignin as a nucleating agent. Murillo-Morales G; Sethupathy S; Zhang M; Xu L; Ghaznavi A; Xu J; Yang B; Sun J; Zhu D Int J Biol Macromol; 2023 May; 236():123881. PubMed ID: 36894065 [TBL] [Abstract][Full Text] [Related]
2. 3D printing with high content of lignin enabled by introducing polyurethane. Zhou X; Ren Z; Sun H; Bi H; Gu T; Xu M Int J Biol Macromol; 2022 Nov; 221():1209-1217. PubMed ID: 36113592 [TBL] [Abstract][Full Text] [Related]
3. Polyurethanes Based on Polylactic Acid for 3D Printing and Shape-Memory Applications. He S; Hu S; Wu Y; Jin R; Niu Z; Wang R; Xue J; Wu S; Zhao X; Zhang L Biomacromolecules; 2022 Oct; 23(10):4192-4202. PubMed ID: 36073828 [TBL] [Abstract][Full Text] [Related]
4. The mechanical properties of alkali and laccase treated pterocarpus angolensis (mukwa)-polylactic acid (PLA) composites. Setswalo K; Oladijo OP; Namoshe M; Akinlabi ET; Sanjay MR Int J Biol Macromol; 2022 Sep; 217():398-406. PubMed ID: 35843393 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the Stability of PLA-Lignin Filament Produced by Bench-Top Extruder for Sustainable 3D Printing. Zaidi SAS; Kwan CE; Mohan D; Harun S; Luthfi AAI; Sajab MS Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902909 [TBL] [Abstract][Full Text] [Related]
6. Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. Tanase-Opedal M; Espinosa E; Rodríguez A; Chinga-Carrasco G Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31527542 [TBL] [Abstract][Full Text] [Related]
7. Comparison of sheep scapula models created with polylactic acid and thermoplastic polyurethane filaments by three-dimensional modelling. Kurt S; Selviler-Sizer S; Onuk B; Kabak M Anat Histol Embryol; 2022 Mar; 51(2):244-249. PubMed ID: 35014052 [TBL] [Abstract][Full Text] [Related]
8. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds. Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848 [TBL] [Abstract][Full Text] [Related]
9. Effect of chemical treatments of arundo donax L. fibre on mechanical and thermal properties of the PLA/PP blend composite filament for FDM 3D printing. Tablit S; Krache R; Amroune S; Jawaid M; Hachaichi A; Ismail AS; Meraj A J Mech Behav Biomed Mater; 2024 Apr; 152():106438. PubMed ID: 38359736 [TBL] [Abstract][Full Text] [Related]
10. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. Chen Q; Mangadlao JD; Wallat J; De Leon A; Pokorski JK; Advincula RC ACS Appl Mater Interfaces; 2017 Feb; 9(4):4015-4023. PubMed ID: 28026926 [TBL] [Abstract][Full Text] [Related]
11. Development of lignin-based 3D-printable light responsive shape memory materials: Design of optically controlled devices. Suo F; Bai X; Liu Y; Xu M; Gu T; Cao L; Lv X; Zhang X; Yao Y Int J Biol Macromol; 2024 Oct; 277(Pt 2):132943. PubMed ID: 38852723 [TBL] [Abstract][Full Text] [Related]
12. The Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU). Brancewicz-Steinmetz E; Sawicki J; Byczkowska P Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771989 [TBL] [Abstract][Full Text] [Related]
13. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication. Haryńska A; Kucinska-Lipka J; Sulowska A; Gubanska I; Kostrzewa M; Janik H Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884832 [TBL] [Abstract][Full Text] [Related]
14. Innovative Approaches for Manufacturing Epoxy-Modified Wood and Cellulose Fiber Composites: A Comparison between Injection Molding and 3D Printing. Lemos Cosse R; van den Berg T; Voet V; Folkersma R; Loos K Chempluschem; 2024 Sep; 89(9):e202300714. PubMed ID: 38837602 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printing of Shape Memory Liquid Crystalline Thermoplastic Elastomeric Composites Using Fused Filament Fabrication. Prathumrat P; Nikzad M; Jahromi FT; Hajizadeh E; Sbarski I Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37836010 [TBL] [Abstract][Full Text] [Related]
16. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Verstraete G; Samaro A; Grymonpré W; Vanhoorne V; Van Snick B; Boone MN; Hellemans T; Van Hoorebeke L; Remon JP; Vervaet C Int J Pharm; 2018 Jan; 536(1):318-325. PubMed ID: 29217471 [TBL] [Abstract][Full Text] [Related]
17. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites. Yu W; Shi J; Sun L; Lei W Molecules; 2022 Oct; 27(21):. PubMed ID: 36364199 [TBL] [Abstract][Full Text] [Related]
18. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Manzanares-Palenzuela CL; Hermanova S; Sofer Z; Pumera M Nanoscale; 2019 Jul; 11(25):12124-12131. PubMed ID: 31211311 [TBL] [Abstract][Full Text] [Related]
19. Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing. Ou-Yang Q; Guo B; Xu J ACS Omega; 2018 Oct; 3(10):14309-14317. PubMed ID: 31458121 [TBL] [Abstract][Full Text] [Related]
20. Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing. Ju Q; Tang Z; Shi H; Zhu Y; Shen Y; Wang T Int J Biol Macromol; 2022 Oct; 219():175-184. PubMed ID: 35926678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]