BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36894065)

  • 21. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications.
    Grivet-Brancot A; Boffito M; Ciardelli G
    Macromol Biosci; 2022 Oct; 22(10):e2200039. PubMed ID: 35488769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topological Structure Design and Fabrication of Biocompatible PLA/TPU/ADM Mesh with Appropriate Elasticity for Hernia Repair.
    Hu Q; Zhang R; Zhang H; Yang D; Liu S; Song Z; Gu Y; Ramalingam M
    Macromol Biosci; 2021 Jun; 21(6):e2000423. PubMed ID: 33870647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 4D printing light-driven actuator with lignin photothermal conversion module.
    Ren Z; Ding K; Zhou X; Ji T; Sun H; Chi X; Xu M
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126562. PubMed ID: 37652328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in lignin-based 3D printing materials: A mini-review.
    Wan Z; Zhang H; Niu M; Guo Y; Li H
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126660. PubMed ID: 37660847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of 3D Printability by FDM and Electrical Conductivity of PLA/MWCNT Filaments Using Lignin as Bio-Dispersant.
    Lage-Rivera S; Ares-Pernas A; Becerra Permuy JC; Gosset A; Abad MJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering.
    Abdul Samat A; Abdul Hamid ZA; Jaafar M; Yahaya BH
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization.
    Crenn MJ; Rohman G; Fromentin O; Benoit A
    Dent Mater J; 2022 Feb; 41(1):110-116. PubMed ID: 34866117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing.
    Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A
    Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive review on fused deposition modelling of polylactic acid.
    Sandanamsamy L; Harun WSW; Ishak I; Romlay FRM; Kadirgama K; Ramasamy D; Idris SRA; Tsumori F
    Prog Addit Manuf; 2022 Oct; ():1-25. PubMed ID: 38625345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extrusion-based technologies for 3D printing: a comparative study of the processability of thermoplastic polyurethane-based formulations.
    Aguilar-de-Leyva Á; Linares V; Domínguez-Robles J; Casas M; Caraballo I
    Pharm Dev Technol; 2023 Dec; 28(10):939-947. PubMed ID: 37878535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering.
    Xu D; Chen S; Xie C; Liang Q; Xiao X
    J Biomater Sci Polym Ed; 2022 Mar; 33(4):532-549. PubMed ID: 34704534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications.
    Kalva SN; Ali F; Velasquez CA; Koç M
    Polymers (Basel); 2023 Jun; 15(11):. PubMed ID: 37299370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing.
    Wang Q; Ji C; Sun L; Sun J; Liu J
    Molecules; 2020 May; 25(10):. PubMed ID: 32429191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds.
    Abdul Samat A; Abdul Hamid ZA; Jaafar M; Ong CC; Yahaya BH
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-Printed Polylactic Acid/Lignin Films with Great Mechanical Properties and Tunable Functionalities towards Superior UV-Shielding, Haze, and Antioxidant Properties.
    Ye H; He Y; Li H; You T; Xu F
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites.
    Yu W; Dong L; Lei W; Zhou Y; Pu Y; Zhang X
    Molecules; 2021 May; 26(11):. PubMed ID: 34072204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FDM 3D Printing and Soil-Burial-Degradation Behaviors of Residue of Astragalus Particles/Thermoplastic Starch/Poly(lactic acid) Biocomposites.
    Ni Z; Shi J; Li M; Lei W; Yu W
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed.
    Yang TC; Yeh CH
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fit accuracy of resin crown on a dental model fabricated using fused deposition modeling 3D printing and a polylactic acid filament.
    Nagata K; Muromachi K; Kouzai Y; Inaba K; Inoue E; Fuchigami K; Nihei T; Atsumi M; Kimoto K; Kawana H
    J Prosthodont Res; 2023 Jan; 67(1):144-149. PubMed ID: 35466158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.