These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36894065)

  • 61. Effect of heat treatment on mechanical properties of 3D printed PLA.
    Jayanth N; Jaswanthraj K; Sandeep S; Mallaya NH; Siddharth SR
    J Mech Behav Biomed Mater; 2021 Nov; 123():104764. PubMed ID: 34392039
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials.
    Abdullah T; Qurban RO; Abdel-Wahab MS; Salah NA; Melaibari AA; Zamzami MA; Memić A
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808690
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization.
    Fang H; Zhang L; Chen A; Wu F
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458279
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysis of PLA Composite Filaments Reinforced with Lignin and Polymerised-Lignin-Treated NFC.
    Gregor-Svetec D; Leskovšek M; Leskovar B; Stanković Elesini U; Vrabič-Brodnjak U
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209091
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution.
    Findrik Balogová A; Hudák R; Tóth T; Schnitzer M; Feranc J; Bakoš D; Živčák J
    J Biotechnol; 2018 Oct; 284():123-130. PubMed ID: 30171928
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology.
    Tiersch TR; Monroe WT
    Cryobiology; 2016 Dec; 73(3):396-398. PubMed ID: 27769741
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of lignin on the mechanical performance of polylactic acid and jute composites.
    Delgado-Aguilar M; Oliver-Ortega H; Alberto Méndez J; Camps J; Espinach FX; Mutjé P
    Int J Biol Macromol; 2018 Sep; 116():299-304. PubMed ID: 29698765
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology.
    Mania S; Ryl J; Jinn JR; Wang YJ; Michałowska A; Tylingo R
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31744085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing.
    Tao Y; Wang H; Li Z; Li P; Shi SQ
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772694
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction.
    Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review.
    Madhu NR; Erfani H; Jadoun S; Amir M; Thiagarajan Y; Chauhan NPS
    Int J Adv Manuf Technol; 2022; 122(5-6):2125-2138. PubMed ID: 36091410
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development of filaments for fused deposition modeling 3D printing with medical grade poly(lactic-co-glycolic acid) copolymers.
    Feuerbach T; Callau-Mendoza S; Thommes M
    Pharm Dev Technol; 2019 Apr; 24(4):487-493. PubMed ID: 30149761
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of Multiple Thermomechanical Processing of 3D Filaments Based on Polylactic Acid and Polyhydroxybutyrate on Their Rheological and Utility Properties.
    Plavec R; Horváth V; Hlaváčiková S; Omaníková L; Repiská M; Medlenová E; Feranc J; Kruželák J; Přikryl R; Figalla S; Kontárová S; Baco A; Danišová L; Vanovčanová Z; Alexy P
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631830
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance.
    Chang YC; Choi D; Takamizawa K; Kikuchi S
    Bioresour Technol; 2014; 152():429-36. PubMed ID: 24316485
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement.
    Liu X; Zhou L; Heng P; Xiao J; Lv J; Zhang Q; Hickey ME; Tu Q; Wang J
    Colloids Surf B Biointerfaces; 2019 Mar; 175():264-271. PubMed ID: 30551013
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin.
    Huang J; Wang H; Liu W; Huang J; Yang D; Qiu X; Zhao L; Hu F; Feng Y
    Int J Biol Macromol; 2023 Jan; 225():1505-1516. PubMed ID: 36435459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.