BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36894099)

  • 1. Potential methane production in oligohaline wetlands undergoing erosion and accretion in the Mississippi River Delta Plain, Louisiana, USA.
    He S; Maiti K; Ghaisas N; Upreti K; Rivera-Monroy VH
    Sci Total Environ; 2023 Jun; 875():162685. PubMed ID: 36894099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissimilatory nitrate reduction to ammonium (DNRA) is marginal relative to denitrification in emerging-eroding wetlands in a subtropical oligohaline and eutrophic coastal delta.
    Upreti K; Rivera-Monroy VH; Maiti K; Giblin AE; Castañeda-Moya E
    Sci Total Environ; 2022 May; 819():152942. PubMed ID: 35007602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial mediated sedimentary phosphorus mobilization in emerging and eroding wetlands of coastal Louisiana.
    Upreti K; Maiti K; Rivera-Monroy VH
    Sci Total Environ; 2019 Feb; 651(Pt 1):122-133. PubMed ID: 30227282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient.
    Hartman WH; Bueno de Mesquita CP; Theroux SM; Morgan-Lang C; Baldocchi DD; Tringe SG
    mSystems; 2024 Jan; 9(1):e0093623. PubMed ID: 38170982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain.
    Twilley RR; Bentley SJ; Chen Q; Edmonds DA; Hagen SC; Lam NS; Willson CS; Xu K; Braud D; Hampton Peele R; McCall A
    Sustain Sci; 2016; 11(4):711-731. PubMed ID: 30174740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral freshwater deltaic wetlands are hotspots of methane flux in the coastal zone.
    Wang D; White JR; Delaune RD; Yu Z; Hu Y
    Sci Total Environ; 2021 Jun; 775():145784. PubMed ID: 33611178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil properties and sediment accretion modulate methane fluxes from restored wetlands.
    Chamberlain SD; Anthony TL; Silver WL; Eichelmann E; Hemes KS; Oikawa PY; Sturtevant C; Szutu DJ; Verfaillie JG; Baldocchi DD
    Glob Chang Biol; 2018 Sep; 24(9):4107-4121. PubMed ID: 29575340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands.
    Wang H; Dai Z; Krauss KW; Trettin CC; Noe GB; Burton AJ; Ward EJ
    Ecol Appl; 2023 Jul; 33(5):e2858. PubMed ID: 37084186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water level changes in Lake Erie drive 21st century CO
    Morin TH; Riley WJ; Grant RF; Mekonnen Z; Stefanik KC; Sanchez ACR; Mulhare MA; Villa J; Wrighton K; Bohrer G
    Sci Total Environ; 2022 May; 821():153087. PubMed ID: 35038507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying forcing agents of environmental change and ecological response on the Mississippi River Delta, Southeastern Louisiana.
    Ryu J; Liu KB; Bianchette TA; McCloskey T
    Sci Total Environ; 2021 Nov; 794():148730. PubMed ID: 34225138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.
    Park JH; Wang JJ; Xiao R; Pensky SM; Kongchum M; DeLaune RD; Seo DC
    Chemosphere; 2018 Mar; 195():455-462. PubMed ID: 29274991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large increase in CH
    Yang P; Lai DYF; Yang H; Lin Y; Tong C; Hong Y; Tian Y; Tang C; Tang KW
    Water Res; 2022 Aug; 222():118882. PubMed ID: 35882096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems.
    Roth F; Sun X; Geibel MC; Prytherch J; Brüchert V; Bonaglia S; Broman E; Nascimento F; Norkko A; Humborg C
    Glob Chang Biol; 2022 Jul; 28(14):4308-4322. PubMed ID: 35340089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon metabolic rates and GHG emissions in different wetland types of the Ebro Delta.
    Morant D; Picazo A; Rochera C; Santamans AC; Miralles-Lorenzo J; Camacho-Santamans A; Ibañez C; Martínez-Eixarch M; Camacho A
    PLoS One; 2020; 15(4):e0231713. PubMed ID: 32320412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of CH
    Chen Q; Guo B; Zhao C; Xing B
    Environ Pollut; 2018 Aug; 239():289-299. PubMed ID: 29660501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal variation of CO
    Yang WB; Yuan CS; Tong C; Yang P; Yang L; Huang BQ
    Mar Pollut Bull; 2017 Jun; 119(1):289-298. PubMed ID: 28434669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.
    Chu H; Gottgens JF; Chen J; Sun G; Desai AR; Ouyang Z; Shao C; Czajkowski K
    Glob Chang Biol; 2015 Mar; 21(3):1165-81. PubMed ID: 25287051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrogen loading on emission of carbon gases from estuarine tidal marshes with varying salinity.
    Hu M; Peñuelas J; Sardans J; Huang J; Li D; Tong C
    Sci Total Environ; 2019 Jun; 667():648-657. PubMed ID: 30833263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.