BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36894555)

  • 1. A MAPKKK gene from rice, RBG1res, confers resistance to Burkholderia glumae through negative regulation of ABA.
    Mizobuchi R; Sugimoto K; Tsushima S; Fukuoka S; Tsuiki C; Endo M; Mikami M; Saika H; Sato H
    Sci Rep; 2023 Mar; 13(1):3947. PubMed ID: 36894555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of major rice cultivars for resistance to bacterial seedling rot caused by
    Mizobuchi R; Fukuoka S; Tsuiki C; Tsushima S; Sato H
    Breed Sci; 2020 Apr; 70(2):221-230. PubMed ID: 32523404
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of qRBS1, a QTL involved in resistance to bacterial seedling rot in rice.
    Mizobuchi R; Sato H; Fukuoka S; Tsushima S; Imbe T; Yano M
    Theor Appl Genet; 2013 Sep; 126(9):2417-25. PubMed ID: 23797600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts.
    Seo YS; Lim JY; Park J; Kim S; Lee HH; Cheong H; Kim SM; Moon JS; Hwang I
    BMC Genomics; 2015 May; 16(1):349. PubMed ID: 25943361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight.
    Iqbal A; Panta PR; Ontoy J; Bruno J; Ham JH; Doerrler WT
    Appl Environ Microbiol; 2021 Aug; 87(18):e0091521. PubMed ID: 34260305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic dissection of the rice-Burkholderia glumae interaction.
    Magbanua ZV; Arick M; Buza T; Hsu CY; Showmaker KC; Chouvarine P; Deng P; Peterson DG; Lu S
    BMC Genomics; 2014 Sep; 15(1):755. PubMed ID: 25183458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice.
    Maeda Y; Kiba A; Ohnishi K; Hikichi Y
    Appl Environ Microbiol; 2004 Sep; 70(9):5613-20. PubMed ID: 15345450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae.
    Akimoto-Tomiyama C
    Sci Rep; 2021 Feb; 11(1):4177. PubMed ID: 33603062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AiiA-mediated quorum quenching does not affect virulence or toxoflavin expression in Burkholderia glumae SL2376.
    Park JY; Lee YH; Yang KY; Kim YC
    Lett Appl Microbiol; 2010 Dec; 51(6):619-24. PubMed ID: 21039666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of major Japanese rice cultivars for resistance to bacterial grain rot caused by
    Mizobuchi R; Fukuoka S; Tsuiki C; Tsushima S; Sato H
    Breed Sci; 2018 Sep; 68(4):413-419. PubMed ID: 30369815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The In Vitro and In Planta Interspecies Interactions Among Rice-Pathogenic
    Kim N; Mannaa M; Kim J; Ra JE; Kim SM; Lee C; Lee HH; Seo YS
    Plant Dis; 2021 Jan; 105(1):134-143. PubMed ID: 33197363
    [No Abstract]   [Full Text] [Related]  

  • 12. Amino acid substitutions in GyrA of Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants.
    Maeda Y; Kiba A; Ohnishi K; Hikichi Y
    Appl Environ Microbiol; 2007 Feb; 73(4):1114-9. PubMed ID: 17194844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine mapping of
    Mizobuchi R; Sato H; Fukuoka S; Tsushima S; Yano M
    Mol Breed; 2015; 35(1):15. PubMed ID: 25620876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences.
    Maeda Y; Shinohara H; Kiba A; Ohnishi K; Furuya N; Kawamura Y; Ezaki T; Vandamme P; Tsushima S; Hikichi Y
    Int J Syst Evol Microbiol; 2006 May; 56(Pt 5):1031-1038. PubMed ID: 16627650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burkholderia glumae: next major pathogen of rice?
    Ham JH; Melanson RA; Rush MC
    Mol Plant Pathol; 2011 May; 12(4):329-39. PubMed ID: 21453428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria.
    Yoshii A; Moriyama H; Fukuhara T
    Appl Environ Microbiol; 2012 Aug; 78(16):5555-64. PubMed ID: 22660700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Seed-Borne Bacterium of Rice,
    Kouzai Y; Akimoto-Tomiyama C
    Life (Basel); 2022 May; 12(6):. PubMed ID: 35743824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetic characterization of rice endophytic bacteria (Oryza sativa L.) with antimicrobial activity against Burkholderia glumae].
    Valdez-Nuñez RA; Ríos-Ruiz WF; Ormeño-Orrillo E; Torres-Chávez EE; Torres-Delgado J
    Rev Argent Microbiol; 2020; 52(4):315-327. PubMed ID: 32147231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of quantitative trait loci for ABA sensitivity at seed germination and seedling stages in rice.
    You J; Li Q; Yue B; Xue WY; Luo LJ; Xiong LZ
    Yi Chuan Xue Bao; 2006 Jun; 33(6):532-41. PubMed ID: 16800384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol of bacterial seedling rot of rice plants using combination of Cytobacillus firmus JBRS159 and silicon.
    Kang JA; Dutta S; Lee YH
    PLoS One; 2023; 18(8):e0290049. PubMed ID: 37578972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.