BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36894709)

  • 1. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection.
    Wei J; Patil A; Collings CK; Alfajaro MM; Liang Y; Cai WL; Strine MS; Filler RB; DeWeirdt PC; Hanna RE; Menasche BL; Ökten A; Peña-Hernández MA; Klein J; McNamara A; Rosales R; McGovern BL; Luis Rodriguez M; García-Sastre A; White KM; Qin Y; Doench JG; Yan Q; Iwasaki A; Zwaka TP; Qi J; Kadoch C; Wilen CB
    Nat Genet; 2023 Mar; 55(3):471-483. PubMed ID: 36894709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation.
    Sharma T; Robinson DCL; Witwicka H; Dilworth FJ; Imbalzano AN
    Nucleic Acids Res; 2021 Aug; 49(14):8060-8077. PubMed ID: 34289068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer.
    He T; Cheng C; Qiao Y; Cho H; Young E; Mannan R; Mahapatra S; Miner SJ; Zheng Y; Kim N; Zeng VZ; Wisniewski JP; Hou S; Jackson B; Cao X; Su F; Wang R; Chang Y; Kuila B; Mukherjee S; Dukare S; Aithal KB; D S S; Abbineni C; Vaishampayan U; Lyssiotis CA; Parolia A; Xiao L; Chinnaiyan AM
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2322563121. PubMed ID: 38557192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer.
    de Miguel FJ; Gentile C; Feng WW; Silva SJ; Sankar A; Exposito F; Cai WL; Melnick MA; Robles-Oteiza C; Hinkley MM; Tsai JA; Hartley AV; Wei J; Wurtz A; Li F; Toki MI; Rimm DL; Homer R; Wilen CB; Xiao AZ; Qi J; Yan Q; Nguyen DX; Jänne PA; Kadoch C; Politi KA
    Cancer Cell; 2023 Aug; 41(8):1516-1534.e9. PubMed ID: 37541244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exquisite Sensitivity to Dual BRG1/BRM ATPase Inhibitors Reveals Broad SWI/SNF Dependencies in Acute Myeloid Leukemia.
    Rago F; Rodrigues LU; Bonney M; Sprouffske K; Kurth E; Elliott G; Ambrose J; Aspesi P; Oborski J; Chen JT; McDonald ER; Mapa FA; Ruddy DA; Kauffmann A; Abrams T; Bhang HC; Jagani Z
    Mol Cancer Res; 2022 Mar; 20(3):361-372. PubMed ID: 34799403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer.
    He T; Cheng C; Qiao Y; Cho H; Young E; Mannan R; Mahapatra S; Miner SJ; Zheng Y; Kim N; Zeng VZ; Wisniewski JP; Hou S; Jackson B; Cao X; Su F; Wang R; Chang Y; Kuila B; Mukherjee S; Dukare S; Aithal KB; D S S; Abbineni C; Lyssiotis CA; Parolia A; Xiao L; Chinnaiyan AM
    bioRxiv; 2024 Mar; ():. PubMed ID: 38464081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The KDM6A-KMT2D-p300 axis regulates susceptibility to diverse coronaviruses by mediating viral receptor expression.
    Wei J; Alfajaro MM; Cai WL; Graziano VR; Strine MS; Filler RB; Biering SB; Sarnik SA; Patel S; Menasche BL; Compton SR; Konermann S; Hsu PD; Orchard RC; Yan Q; Wilen CB
    PLoS Pathog; 2023 Jul; 19(7):e1011351. PubMed ID: 37410700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian SWI/SNF Complex Genomic Alterations and Immune Checkpoint Blockade in Solid Tumors.
    Abou Alaiwi S; Nassar AH; Xie W; Bakouny Z; Berchuck JE; Braun DA; Baca SC; Nuzzo PV; Flippot R; Mouhieddine TH; Spurr LF; Li YY; Li T; Flaifel A; Steinharter JA; Margolis CA; Vokes NI; Du H; Shukla SA; Cherniack AD; Sonpavde G; Haddad RI; Awad MM; Giannakis M; Hodi FS; Liu XS; Signoretti S; Kadoch C; Freedman ML; Kwiatkowski DJ; Van Allen EM; Choueiri TK
    Cancer Immunol Res; 2020 Aug; 8(8):1075-1084. PubMed ID: 32321774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SWI/SNF Complex: A Frequently Mutated Chromatin Remodeling Complex in Cancer.
    Nguyen VT; Tessema M; Weissman BE
    Cancer Treat Res; 2023; 190():211-244. PubMed ID: 38113003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers.
    Hoffman GR; Rahal R; Buxton F; Xiang K; McAllister G; Frias E; Bagdasarian L; Huber J; Lindeman A; Chen D; Romero R; Ramadan N; Phadke T; Haas K; Jaskelioff M; Wilson BG; Meyer MJ; Saenz-Vash V; Zhai H; Myer VE; Porter JA; Keen N; McLaughlin ME; Mickanin C; Roberts CW; Stegmeier F; Jagani Z
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):3128-33. PubMed ID: 24520176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting.
    Pan J; McKenzie ZM; D'Avino AR; Mashtalir N; Lareau CA; St Pierre R; Wang L; Shilatifard A; Kadoch C
    Nat Genet; 2019 Apr; 51(4):618-626. PubMed ID: 30858614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variants in ACE2; potential influences on virus infection and COVID-19 severity.
    Bakhshandeh B; Sorboni SG; Javanmard AR; Mottaghi SS; Mehrabi MR; Sorouri F; Abbasi A; Jahanafrooz Z
    Infect Genet Evol; 2021 Jun; 90():104773. PubMed ID: 33607284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptibilities of Human ACE2 Genetic Variants in Coronavirus Infection.
    Ren W; Zhu Y; Lan J; Chen H; Wang Y; Shi H; Feng F; Chen DY; Close B; Zhao X; Wu J; Tian B; Yuan Z; Zhou D; Saeed M; Wang X; Zhang R; Ding Q
    J Virol; 2022 Jan; 96(1):e0149221. PubMed ID: 34668773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TRAF3-DYRK1A-RAD54L2 complex maintains ACE2 expression to promote SARS-CoV-2 infection.
    Mao D; Liu S; Phan AT; Renner S; Sun Y; Wang TT; Zhu Y
    J Virol; 2024 May; 98(5):e0034724. PubMed ID: 38651897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication.
    Adams LE; Dinnon KH; Hou YJ; Sheahan TP; Heise MT; Baric RS
    mBio; 2021 Mar; 12(2):. PubMed ID: 33727353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).
    Bourgonje AR; Abdulle AE; Timens W; Hillebrands JL; Navis GJ; Gordijn SJ; Bolling MC; Dijkstra G; Voors AA; Osterhaus AD; van der Voort PH; Mulder DJ; van Goor H
    J Pathol; 2020 Jul; 251(3):228-248. PubMed ID: 32418199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer.
    Wu Q; Lian JB; Stein JL; Stein GS; Nickerson JA; Imbalzano AN
    Epigenomics; 2017 Jun; 9(6):919-931. PubMed ID: 28521512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection.
    Wei J; Alfajaro MM; DeWeirdt PC; Hanna RE; Lu-Culligan WJ; Cai WL; Strine MS; Zhang SM; Graziano VR; Schmitz CO; Chen JS; Mankowski MC; Filler RB; Ravindra NG; Gasque V; de Miguel FJ; Patil A; Chen H; Oguntuyo KY; Abriola L; Surovtseva YV; Orchard RC; Lee B; Lindenbach BD; Politi K; van Dijk D; Kadoch C; Simon MD; Yan Q; Doench JG; Wilen CB
    Cell; 2021 Jan; 184(1):76-91.e13. PubMed ID: 33147444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2.
    Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG
    mBio; 2020 Sep; 11(5):. PubMed ID: 32913009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2.
    Castiglione GM; Zhou L; Xu Z; Neiman Z; Hung CF; Duh EJ
    PLoS Biol; 2021 Dec; 19(12):e3001510. PubMed ID: 34932561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.