These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 3689489)

  • 1. Joint moment and mechanical power flow of the lower limb during vertical jump.
    Fukashiro S; Komi PV
    Int J Sports Med; 1987 Mar; 8 Suppl 1():15-21. PubMed ID: 3689489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage and utilization of elastic strain energy during jumping.
    Anderson FC; Pandy MG
    J Biomech; 1993 Dec; 26(12):1413-27. PubMed ID: 8308046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint specificity of stretch shortening cycle potentiation at propulsion onset during jump test performance.
    Almutairi MK; Hunter GR; Inacio M; Hurt CP; Lein DH; Reed WR; Singh H
    J Sports Med Phys Fitness; 2023 Jan; 63(1):69-76. PubMed ID: 35816138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maximal and submaximal vertical jump: implications for strength and conditioning.
    Lees A; Vanrenterghem J; De Clercq D
    J Strength Cond Res; 2004 Nov; 18(4):787-91. PubMed ID: 15574084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.
    Prilutsky BI; Zatsiorsky VM
    J Biomech; 1994 Jan; 27(1):25-34. PubMed ID: 8106533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hip moment and knee power eccentric utilisation ratios determine lower-extremity stretch-shortening cycle performance.
    Kipp K; Krzyszkowski J; Heeneman J
    Sports Biomech; 2021 Aug; 20(5):532-542. PubMed ID: 30907707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a horizontal approach on the mechanical output during drop jumps.
    Ruan M; Li L
    Res Q Exerc Sport; 2008 Mar; 79(1):1-9. PubMed ID: 18431945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-length-velocity behavior and muscle-specific joint moment contributions during countermovement and squat jumps.
    Kipp K; Kim H
    Comput Methods Biomech Biomed Engin; 2022 May; 25(6):688-697. PubMed ID: 34491147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint dynamics and intra-subject variability during countermovement jumps in children and adults.
    Raffalt PC; Alkjær T; Simonsen EB
    J Biomech; 2016 Sep; 49(13):2968-2974. PubMed ID: 27475845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps.
    Stefanyshyn DJ; Nigg BM
    J Sports Sci; 1998 Feb; 16(2):177-86. PubMed ID: 9531006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlational Analysis between Joint-level Kinetics of Countermovement Jumps and Weightlifting Derivatives.
    Kipp K; Suchomel TJ; Comfort P
    J Sports Sci Med; 2019 Dec; 18(4):663-668. PubMed ID: 31827350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps.
    Gheller RG; Dal Pupo J; Ache-Dias J; Detanico D; Padulo J; dos Santos SG
    Hum Mov Sci; 2015 Aug; 42():71-80. PubMed ID: 25965000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A work-energy approach to determine individual joint contributions to vertical jump performance.
    Hubley CL; Wells RP
    Eur J Appl Physiol Occup Physiol; 1983; 50(2):247-54. PubMed ID: 6681756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Demands of the Hang Power Clean and Jump Shrug: A Joint-Level Perspective.
    Kipp K; Malloy PJ; Smith JC; Giordanelli MD; Kiely MT; Geiser CF; Suchomel TJ
    J Strength Cond Res; 2018 Feb; 32(2):466-474. PubMed ID: 27669182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explosive movement in the older men: analysis and comparative study of vertical jump.
    Argaud S; Pairot de Fontenay B; Blache Y; Monteil K
    Aging Clin Exp Res; 2017 Oct; 29(5):985-992. PubMed ID: 27844453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Exercise-Induced Fatigue on Lower Extremity Joint Mechanics, Stiffness, and Energy Absorption during Landings.
    Zhang X; Xia R; Dai B; Sun X; Fu W
    J Sports Sci Med; 2018 Dec; 17(4):640-649. PubMed ID: 30479533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretch-shortening cycle characteristics during vertical jumps carried out with small and large range of motion.
    Kopper B; Csende Z; Trzaskoma L; Tihanyi J
    J Electromyogr Kinesiol; 2014 Apr; 24(2):233-9. PubMed ID: 24485559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.