These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36895071)
21. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
22. Output Enhancement of Triboelectric Nanogenerators Based on Hierarchically Regular Cadmium Coordination Polymers for Photocycloaddition. Lu G; Huang C; Qiu M; Zhang Q; Cui S; Zhang L; Zhang YY; Mi L Inorg Chem; 2022 Aug; 61(32):12736-12745. PubMed ID: 35929450 [TBL] [Abstract][Full Text] [Related]
23. High-Efficiency Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Loaded 3D Marigold Flower-Like Bismuth Tungstate Triboelectric Films for Mechanical Energy Harvesting and Sensing Applications. Manchi P; Graham SA; Patnam H; Paranjape MV; Yu JS Small; 2022 May; 18(20):e2200822. PubMed ID: 35419981 [TBL] [Abstract][Full Text] [Related]
24. Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. Mi HY; Jing X; Meador MAB; Guo H; Turng LS; Gong S ACS Appl Mater Interfaces; 2018 Sep; 10(36):30596-30606. PubMed ID: 30114352 [TBL] [Abstract][Full Text] [Related]
25. Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator. Cui N; Gu L; Lei Y; Liu J; Qin Y; Ma X; Hao Y; Wang ZL ACS Nano; 2016 Jun; 10(6):6131-8. PubMed ID: 27129019 [TBL] [Abstract][Full Text] [Related]
26. Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification. Feng PY; Xia Z; Sun B; Jing X; Li H; Tao X; Mi HY; Liu Y ACS Appl Mater Interfaces; 2021 Apr; 13(14):16916-16927. PubMed ID: 33819011 [TBL] [Abstract][Full Text] [Related]
27. Study of the Effects of the Structure of Phthalazinone's Side-Group on the Properties of the Poly(phthalazinone ether ketone)s Resins. Bao F; Zhang F; Wang C; Song Y; Li N; Wang J; Jian X Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060336 [TBL] [Abstract][Full Text] [Related]
28. Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Yu Y; Li Z; Wang Y; Gong S; Wang X Adv Mater; 2015 Sep; 27(33):4938-44. PubMed ID: 26177927 [TBL] [Abstract][Full Text] [Related]
29. Engineered and Laser-Processed Chitosan Biopolymers for Sustainable and Biodegradable Triboelectric Power Generation. Wang R; Gao S; Yang Z; Li Y; Chen W; Wu B; Wu W Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349877 [TBL] [Abstract][Full Text] [Related]
30. Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown. Liu D; Zhou L; Cui S; Gao Y; Li S; Zhao Z; Yi Z; Zou H; Fan Y; Wang J; Wang ZL Nat Commun; 2022 Oct; 13(1):6019. PubMed ID: 36224185 [TBL] [Abstract][Full Text] [Related]
31. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Wang S; Lin L; Xie Y; Jing Q; Niu S; Wang ZL Nano Lett; 2013 May; 13(5):2226-33. PubMed ID: 23581714 [TBL] [Abstract][Full Text] [Related]
32. 3D nanocrystalline metal-organic framework materials for the improved output performance of triboelectric nanogenerators. Gao K; Chen J; Zhao M; Hu R; Chen S; Xue X; Shao Z; Hou H Dalton Trans; 2023 Jan; 52(2):444-451. PubMed ID: 36524722 [TBL] [Abstract][Full Text] [Related]
33. Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. Li M; Lu HW; Wang SW; Li RP; Chen JY; Chuang WS; Yang FS; Lin YF; Chen CY; Lai YC Nat Commun; 2022 Feb; 13(1):938. PubMed ID: 35177614 [TBL] [Abstract][Full Text] [Related]
34. Fluorinated Graphene-Enabled Durable Triboelectric Coating for Water Energy Harvesting. Jiang C; Li X; Ying Y; Ping J Small; 2021 Feb; 17(8):e2007805. PubMed ID: 33522115 [TBL] [Abstract][Full Text] [Related]
35. Suppressing Thermal Negative Effect and Maintaining High-Temperature Steady Electrical Performance of Triboelectric Nanogenerators by Employing Phase Change Material. Cao R; Xia Y; Wang J; Jia X; Jia C; Zhu S; Zhang W; Gao X; Zhang X ACS Appl Mater Interfaces; 2021 Sep; 13(35):41657-41668. PubMed ID: 34432426 [TBL] [Abstract][Full Text] [Related]
36. Oxygen-Rich Polymers as Highly Effective Positive Tribomaterials for Mechanical Energy Harvesting. Zhang Z; Gong W; Bai Z; Wang D; Xu Y; Li Z; Guo J; Turng LS ACS Nano; 2019 Nov; 13(11):12787-12797. PubMed ID: 31633902 [TBL] [Abstract][Full Text] [Related]
37. Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator. Sahoo M; Lai SN; Wu JM; Wu MC; Lai CS Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578591 [TBL] [Abstract][Full Text] [Related]
38. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. Shin SH; Bae YE; Moon HK; Kim J; Choi SH; Kim Y; Yoon HJ; Lee MH; Nah J ACS Nano; 2017 Jun; 11(6):6131-6138. PubMed ID: 28558185 [TBL] [Abstract][Full Text] [Related]
39. Tunable Work Function of Mg Guo QZ; Yang LC; Wang RC; Liu CP ACS Appl Mater Interfaces; 2019 Jan; 11(1):1420-1425. PubMed ID: 30550263 [TBL] [Abstract][Full Text] [Related]
40. Boosting the Power and Lowering the Impedance of Triboelectric Nanogenerators through Manipulating the Permittivity for Wearable Energy Harvesting. Wang HL; Guo ZH; Zhu G; Pu X; Wang ZL ACS Nano; 2021 Apr; 15(4):7513-7521. PubMed ID: 33856770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]