These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36895399)

  • 1. Supersolidus liquid phase sintering of water-atomized low-alloy steel in binder jetting additive manufacturing.
    Yang M; Keshavarz MK; Vlasea M; Molavi-Kakhki A; Laher M
    Heliyon; 2023 Mar; 9(3):e13882. PubMed ID: 36895399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6.
    Mostafaei A; Rodriguez De Vecchis P; Buckenmeyer MJ; Wasule SR; Brown BN; Chmielus M
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():276-288. PubMed ID: 31147000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders.
    Mostafaei A; Hughes ET; Hilla C; Stevens EL; Chmielus M
    Data Brief; 2017 Feb; 10():116-121. PubMed ID: 27981202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reactive molecular dynamics study of bi-modal particle size distribution in binder-jetting additive manufacturing using stainless-steel powders.
    Gao Y; Clares AP; Manogharan G; van Duin ACT
    Phys Chem Chem Phys; 2022 May; 24(19):11603-11615. PubMed ID: 35535797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Densification and Properties of Bimodal 316L Stainless Steel Produced by Binder Jetting Printing with Addition of B
    Liao X; Chen Q; Zhao Z; Yang Q; Li J
    3D Print Addit Manuf; 2024 Jun; 11(3):e1213-e1226. PubMed ID: 39359588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing.
    Bai Y; Williams CB
    Nanotechnology; 2018 Sep; 29(39):395706. PubMed ID: 29968575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing, Debinding and Sintering of 15-5PH Stainless Steel Components by Fused Deposition Modeling Additive Manufacturing.
    Chang G; Zhang X; Ma F; Zhang C; Xu L
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and Fatigue Properties of Ti-6Al-4V Alloy Fabricated Using Binder Jetting Process and Subjected to Hot Isostatic Pressing.
    Alegre JM; Díaz A; García R; Peral LB; Lorenzo-Bañuelos M; Cuesta II
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data related to the sinter structure analysis of titanium structures fabricated via binder jetting additive manufacturing.
    Wheat E; Vlasea M; Hinebaugh J; Metcalfe C
    Data Brief; 2018 Oct; 20():1029-1038. PubMed ID: 30225318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Properties of Barium Titanate Lead-Free Piezoceramic Manufactured by Binder Jetting Process.
    Sufiiarov V; Kantyukov A; Popovich A; Sotov A
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A laboratory-scale binder jet additive manufacturing testbed for process exploration and material development.
    Oropeza D; Hart AJ
    Int J Adv Manuf Technol; 2021 Jun; 114():3459-3473. PubMed ID: 34163094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief data overview of differently heat treated binder jet printed samples made from argon atomized alloy 625 powder.
    Mostafaei A; Behnamian Y; Krimer YL; Stevens EL; Luo JL; Chmielus M
    Data Brief; 2016 Dec; 9():556-562. PubMed ID: 27752525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect Induction Sintering of Metal Parts Produced through Material Extrusion Additive Manufacturing.
    Ortega Varela de Seijas M; Bardenhagen A; Rohr T; Stoll E
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering.
    Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF
    Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Sintering Atmosphere, Temperature and the Solution-Annealing Treatment on the Properties of Precipitation-Hardening Sintered 17-4 PH Stainless Steel.
    Kazior J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additively manufactured, long, serpentine submillimeter channels by combining binder jet printing and liquid-phase sintering.
    Do T; Suen H; Mehboudi A; Bauder T; Rudolf C; Kwon P; Yeom J
    Sci Rep; 2024 Jul; 14(1):16825. PubMed ID: 39039096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.
    Padmavathi C; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2012; 46(3):115-27. PubMed ID: 24432468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.