These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36895413)

  • 1. Quantum walk processes in quantum devices.
    Madhu AK; Melnikov AA; Fedichkin LE; Alodjants AP; Lee RK
    Heliyon; 2023 Mar; 9(3):e13416. PubMed ID: 36895413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits.
    Ying C; Cheng B; Zhao Y; Huang HL; Zhang YN; Gong M; Wu Y; Wang S; Liang F; Lin J; Xu Y; Deng H; Rong H; Peng CZ; Yung MH; Zhu X; Pan JW
    Phys Rev Lett; 2023 Mar; 130(11):110601. PubMed ID: 37001092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient quantum walk on a quantum processor.
    Qiang X; Loke T; Montanaro A; Aungskunsiri K; Zhou X; O'Brien JL; Wang JB; Matthews JCF
    Nat Commun; 2016 May; 7():11511. PubMed ID: 27146471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assisted quantum simulation of open quantum systems.
    Liang JM; Lv QQ; Wang ZX; Fei SM
    iScience; 2023 Apr; 26(4):106306. PubMed ID: 36994076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum computer-aided design for advanced superconducting qubit: Plasmonium.
    Liu FM; Wang C; Chen MC; Chen H; Li SW; Shang ZX; Ying C; Wang JW; Huo YH; Peng CZ; Zhu X; Lu CY; Pan JW
    Sci Bull (Beijing); 2023 Aug; 68(15):1625-1631. PubMed ID: 37453825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum error mitigation via quantum-noise-effect circuit groups.
    Hama Y; Nishi H
    Sci Rep; 2024 Mar; 14(1):6077. PubMed ID: 38480717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational Quantum Simulation of Chemical Dynamics with Quantum Computers.
    Lee CK; Hsieh CY; Zhang S; Shi L
    J Chem Theory Comput; 2022 Apr; 18(4):2105-2113. PubMed ID: 35293753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. qTorch: The quantum tensor contraction handler.
    Fried ES; Sawaya NPD; Cao Y; Kivlichan ID; Romero J; Aspuru-Guzik A
    PLoS One; 2018; 13(12):e0208510. PubMed ID: 30532242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor.
    Qiang X; Wang Y; Xue S; Ge R; Chen L; Liu Y; Huang A; Fu X; Xu P; Yi T; Xu F; Deng M; Wang JB; Meinecke JDA; Matthews JCF; Cai X; Yang X; Wu J
    Sci Adv; 2021 Feb; 7(9):. PubMed ID: 33637521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A NISQ Method to Simulate Hermitian Matrix Evolution.
    Li K; Gao P
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QM-DLA: an efficient qubit mapping method based on dynamic look-ahead strategy.
    Liu H; Zhang B; Zhu Y; Yang H; Zhao B
    Sci Rep; 2024 Jun; 14(1):13118. PubMed ID: 38849506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor Network States Algorithm.
    Guo C; Zhao Y; Huang HL
    Phys Rev Lett; 2021 Feb; 126(7):070502. PubMed ID: 33666457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor.
    Gong M; Wang S; Zha C; Chen MC; Huang HL; Wu Y; Zhu Q; Zhao Y; Li S; Guo S; Qian H; Ye Y; Chen F; Ying C; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Zhang K; Cao S; Lin J; Xu Y; Sun L; Guo C; Li N; Liang F; Bastidas VM; Nemoto K; Munro WJ; Huo YH; Lu CY; Peng CZ; Zhu X; Pan JW
    Science; 2021 May; 372(6545):948-952. PubMed ID: 33958483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Implementation of Discrete-Time Quantum Walks on Quantum Computers.
    Razzoli L; Cenedese G; Bondani M; Benenti G
    Entropy (Basel); 2024 Apr; 26(4):. PubMed ID: 38667867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast reconstruction algorithm based on HMC sampling.
    Lian H; Xu J; Zhu Y; Fan Z; Liu Y; Shan Z
    Sci Rep; 2023 Oct; 13(1):17773. PubMed ID: 37853048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
    Maldonado TJ; Flick J; Krastanov S; Galda A
    Sci Rep; 2022 Apr; 12(1):6379. PubMed ID: 35430608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strongly correlated quantum walks with a 12-qubit superconducting processor.
    Yan Z; Zhang YR; Gong M; Wu Y; Zheng Y; Li S; Wang C; Liang F; Lin J; Xu Y; Guo C; Sun L; Peng CZ; Xia K; Deng H; Rong H; You JQ; Nori F; Fan H; Zhu X; Pan JW
    Science; 2019 May; 364(6442):753-756. PubMed ID: 31048551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.
    Chakraborty S; Novo L; Ambainis A; Omar Y
    Phys Rev Lett; 2016 Mar; 116(10):100501. PubMed ID: 27015464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Neural Network Assisted Quantum Chemistry Calculations on Quantum Computers.
    Ghosh K; Kumar S; Rajan NM; Yamijala SSRKC
    ACS Omega; 2023 Dec; 8(50):48211-48220. PubMed ID: 38144092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs.
    Wu T; Izaac JA; Li ZX; Wang K; Chen ZZ; Zhu S; Wang JB; Ma XS
    Phys Rev Lett; 2020 Dec; 125(24):240501. PubMed ID: 33412067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.