These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36896246)

  • 1. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy.
    Xiang G; Li D; Chen J; Mishra A; Sankin G; Zhao X; Tang Y; Wang K; Yao J; Zhong P
    Phys Fluids (1994); 2023 Mar; 35(3):033303. PubMed ID: 36896246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock waves generated by toroidal bubble collapse are imperative for kidney stone dusting during Holmium:YAG laser lithotripsy.
    Xiang G; Chen J; Ho D; Sankin G; Zhao X; Liu Y; Wang K; Dolbow J; Yao J; Zhong P
    Ultrason Sonochem; 2023 Dec; 101():106649. PubMed ID: 37866136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation Plays a Vital Role in Stone Dusting During Short Pulse Holmium:YAG Laser Lithotripsy.
    Chen J; Ho DS; Xiang G; Sankin G; Preminger GM; Lipkin ME; Zhong P
    J Endourol; 2022 May; 36(5):674-683. PubMed ID: 34806899
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas Bubble Anatomy During Laser Lithotripsy: An Experimental
    Petzold R; Suarez-Ibarrola R; Miernik A
    J Endourol; 2021 Jul; 35(7):1051-1057. PubMed ID: 33207950
    [No Abstract]   [Full Text] [Related]  

  • 6. Transient cavitation and acoustic emission produced by different laser lithotripters.
    Zhong P; Tong HL; Cocks FH; Pearle MS; Preminger GM
    J Endourol; 1998 Aug; 12(4):371-8. PubMed ID: 9726407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
    Koukas E; Papoutsakis A; Gavaises M
    Ultrason Sonochem; 2023 May; 95():106393. PubMed ID: 37031534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.
    Chan KF; Vassar GJ; Pfefer TJ; Teichman JM; Glickman RD; Weintraub ST; Welch AJ
    Lasers Surg Med; 1999; 25(1):22-37. PubMed ID: 10421883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Scanning Speed and Standoff Distance of the Fiber on Dusting Efficiency during Short Pulse Holmium: YAG Laser Lithotripsy.
    Chen J; Li D; Yu W; Ma Z; Li C; Xiang G; Wu Y; Yao J; Zhong P
    J Clin Med; 2022 Aug; 11(17):. PubMed ID: 36078979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Different Pulse Modulation Modes for Holmium:Yttrium-Aluminum-Garnet Laser Lithotripsy Ablation in a Benchtop Model.
    Terry RS; Ho DS; Scialabba DM; Whelan PS; Qi R; Ketterman BT; Preminger GM; Zhong P; Lipkin ME
    J Endourol; 2022 Jan; 36(1):29-37. PubMed ID: 34269626
    [No Abstract]   [Full Text] [Related]  

  • 14. In situ measurement of cavitation damage from single bubble collapse using high-speed chronoamperometry.
    Abedini M; Hanke S; Reuter F
    Ultrason Sonochem; 2023 Jan; 92():106272. PubMed ID: 36566520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma bubble formation induced by holmium laser: an in vitro study.
    Cecchetti W; Zattoni F; Nigro F; Tasca A
    Urology; 2004 Mar; 63(3):586-90. PubMed ID: 15028473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tri-modality cavitation mapping in shock wave lithotripsy.
    Li M; Sankin G; Vu T; Yao J; Zhong P
    J Acoust Soc Am; 2021 Feb; 149(2):1258. PubMed ID: 33639826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Cavitation in Energy Delivery and Stone Damage During Laser Lithotripsy.
    Ho DS; Scialabba D; Terry RS; Ma X; Chen J; Sankin GN; Xiang G; Qi R; Preminger GM; Lipkin ME; Zhong P
    J Endourol; 2021 Jun; 35(6):860-870. PubMed ID: 33514285
    [No Abstract]   [Full Text] [Related]  

  • 20. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.
    Xi X; Zhong P
    Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.