These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36896495)

  • 1. Changes in endogenous abscisic acid and stomata of the resurrection fern, Pleopeltis polypodioides, in response to de- and rehydration.
    John SP; Svihla ZT; Hasenstein KH
    Am J Bot; 2023 Apr; 110(4):e16152. PubMed ID: 36896495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential responses of stomatal kinetics and steady-state conductance to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm.
    Grantz DA; Linscheid BS; Grulke NE
    New Phytol; 2019 Jun; 222(4):1883-1892. PubMed ID: 30740702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fern and lycophyte guard cells do not respond to endogenous abscisic acid.
    McAdam SA; Brodribb TJ
    Plant Cell; 2012 Apr; 24(4):1510-21. PubMed ID: 22517320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical responses of the desiccation-tolerant resurrection fern Pleopeltis polypodioides to dehydration and rehydration.
    John SP; Hasenstein KH
    J Plant Physiol; 2018 Sep; 228():12-18. PubMed ID: 29803130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fern Stomatal Responses to ABA and CO
    Hõrak H; Kollist H; Merilo E
    Plant Physiol; 2017 Jun; 174(2):672-679. PubMed ID: 28351911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desiccation and rehydration dynamics in the epiphytic resurrection fern Pleopeltis polypodioides.
    Prats KA; Brodersen CR
    Plant Physiol; 2021 Nov; 187(3):1501-1518. PubMed ID: 34618062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought.
    McAdam SAM; Brodribb TJ
    New Phytol; 2013 Apr; 198(2):429-441. PubMed ID: 23421706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status.
    Cardoso AA; McAdam SAM
    Plant Signal Behav; 2019; 14(7):1610307. PubMed ID: 31032706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana.
    Zhang L; Shi X; Zhang Y; Wang J; Yang J; Ishida T; Jiang W; Han X; Kang J; Wang X; Pan L; Lv S; Cao B; Zhang Y; Wu J; Han H; Hu Z; Cui L; Sawa S; He J; Wang G
    Plant Cell Environ; 2019 Mar; 42(3):1033-1044. PubMed ID: 30378140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner.
    Lv S; Zhang Y; Li C; Liu Z; Yang N; Pan L; Wu J; Wang J; Yang J; Lv Y; Zhang Y; Jiang W; She X; Wang G
    New Phytol; 2018 Jan; 217(1):290-304. PubMed ID: 28940201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide.
    Liu XD; Zeng YY; Zhang XY; Tian XQ; Hasan MM; Yao GQ; Fang XW
    Physiol Plant; 2023 Mar; 175(2):e13903. PubMed ID: 37002824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms.
    Cândido-Sobrinho SA; Lima VF; Freire FBS; de Souza LP; Gago J; Fernie AR; Daloso DM
    Plant Cell Environ; 2022 Feb; 45(2):296-311. PubMed ID: 34800300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages.
    Gong L; Liu XD; Zeng YY; Tian XQ; Li YL; Turner NC; Fang XW
    Plant Physiol; 2021 May; 186(1):782-797. PubMed ID: 33620497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern
    Cardoso AA; Randall JM; McAdam SAM
    Plant Physiol; 2019 Feb; 179(2):533-543. PubMed ID: 30538169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress.
    Yu SG; Kim JH; Cho NH; Oh TR; Kim WT
    Plant J; 2020 Jul; 103(2):824-842. PubMed ID: 32314432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional stomatal closure in a fern shares molecular features with flowering plant active stomatal responses.
    Plackett ARG; Emms DM; Kelly S; Hetherington AM; Langdale JA
    Curr Biol; 2021 Oct; 31(20):4560-4570.e5. PubMed ID: 34450089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of peltate scales in desiccation tolerance of Pleopeltis polypodioides.
    John SP; Hasenstein KH
    Planta; 2017 Jan; 245(1):207-220. PubMed ID: 27928638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants.
    Yang YJ; Bi MH; Nie ZF; Jiang H; Liu XD; Fang XW; Brodribb TJ
    New Phytol; 2021 Jun; 230(5):2001-2010. PubMed ID: 33586157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating active and passive influences on stomatal control of transpiration.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2014 Apr; 164(4):1578-86. PubMed ID: 24488969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses.
    Seo DH; Ryu MY; Jammes F; Hwang JH; Turek M; Kang BG; Kwak JM; Kim WT
    Plant Physiol; 2012 Sep; 160(1):556-68. PubMed ID: 22829319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.