These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36896499)

  • 1. Hierarchical Serpentine-Helix Combination for 3D Stretchable Electronics.
    Yan Z; Liu Y; Xiong J; Wang B; Dai L; Gao M; Pan T; Yang W; Lin Y
    Adv Mater; 2023 Jun; 35(23):e2210238. PubMed ID: 36896499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable Micromotion Sensor with Enhanced Sensitivity Using Serpentine Layout.
    Yan Z; Pan T; Wang D; Li J; Jin L; Huang L; Jiang J; Qi Z; Zhang H; Gao M; Yang W; Lin Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12261-12271. PubMed ID: 30807090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serpentine-pattern effects on the biaxial stretching of percolative graphene nanoflake films.
    Chun S; Cho SB; Son W; Kim Y; Jung H; Kim YJ; Choi C
    Nanotechnology; 2019 Nov; 31(8):085303. PubMed ID: 31769411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freestanding Serpentine Silicon Strips with Ultrahigh Stretchability over 300% for Wearable Electronics.
    Shi Y; Zhao J; Zhang B; Qin J; Hu X; Cheng Y; Yu J; Jie J; Zhang X
    Adv Mater; 2024 Jun; 36(24):e2313603. PubMed ID: 38489559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable electronic strips for electronic textiles enabled by 3D helical structure.
    Stanley J; Kunovski P; Hunt JA; Wei Y
    Sci Rep; 2024 May; 14(1):11065. PubMed ID: 38744933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability.
    An BW; Gwak EJ; Kim K; Kim YC; Jang J; Kim JY; Park JU
    Nano Lett; 2016 Jan; 16(1):471-8. PubMed ID: 26670378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage.
    Zhang Y; Xu S; Fu H; Lee J; Su J; Hwang KC; Rogers JA; Huang Y
    Soft Matter; 2013; 9(33):8062-8070. PubMed ID: 25309616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL).
    Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-buckled structures for stretchable and compressible thin film silicon solar cells.
    Nam J; Seo B; Lee Y; Kim DH; Jo S
    Sci Rep; 2017 Aug; 7(1):7575. PubMed ID: 28790374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.
    Lee J; Llerena Zambrano B; Woo J; Yoon K; Lee T
    Adv Mater; 2020 Feb; 32(5):e1902532. PubMed ID: 31495991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical serpentine interconnect-enabled stretchable and curved electronics.
    Jiao R; Wang R; Wang Y; Cheung YK; Chen X; Wang X; Deng Y; Yu H
    Microsyst Nanoeng; 2023; 9():149. PubMed ID: 38025886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Stretchable Organic Light-Emitting Devices with High Efficiency.
    Yin D; Feng J; Jiang NR; Ma R; Liu YF; Sun HB
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31166-31171. PubMed ID: 27790909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics.
    Xue Z; Song H; Rogers JA; Zhang Y; Huang Y
    Adv Mater; 2020 Apr; 32(15):e1902254. PubMed ID: 31348578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Stretchable Antennas for Biointegrated Electronics.
    Xie Z; Avila R; Huang Y; Rogers JA
    Adv Mater; 2020 Apr; 32(15):e1902767. PubMed ID: 31490582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects.
    Wang Y; Zhou Z; Li R; Wang J; Sha B; Li S; Su Y
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction.
    Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable One-Dimensional Conductors for Wearable Applications.
    Nie M; Li B; Hsieh YL; Fu KK; Zhou J
    ACS Nano; 2022 Dec; 16(12):19810-19839. PubMed ID: 36475644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.