These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36896589)

  • 1. De novo Assembly and Comparative Analyses of Mitochondrial Genomes in Piperales.
    Yu R; Chen X; Long L; Jost M; Zhao R; Liu L; Mower JP; dePamphilis CW; Wanke S; Jiao Y
    Genome Biol Evol; 2023 Mar; 15(3):. PubMed ID: 36896589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major trends in stem anatomy and growth forms in the perianth-bearing Piperales, with special focus on Aristolochia.
    Wagner ST; Hesse L; Isnard S; Samain MS; Bolin J; Maass E; Neinhuis C; Rowe NP; Wanke S
    Ann Bot; 2014 Jun; 113(7):1139-54. PubMed ID: 24694829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discordant Phylogenomic Placement of Hydnoraceae and Lactoridaceae Within Piperales Using Data From All Three Genomes.
    Jost M; Samain MS; Marques I; Graham SW; Wanke S
    Front Plant Sci; 2021; 12():642598. PubMed ID: 33912209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms.
    Dong S; Chen L; Liu Y; Wang Y; Zhang S; Yang L; Lang X; Zhang S
    PLoS One; 2020; 15(4):e0231020. PubMed ID: 32294100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids.
    Cai Z; Penaflor C; Kuehl JV; Leebens-Mack J; Carlson JE; dePamphilis CW; Boore JL; Jansen RK
    BMC Evol Biol; 2006 Oct; 6():77. PubMed ID: 17020608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate.
    Richardson AO; Rice DW; Young GJ; Alverson AJ; Palmer JD
    BMC Biol; 2013 Apr; 11():29. PubMed ID: 23587068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Piperales--matK gene and trnK intron sequence data reveal lineage specific resolution contrast.
    Wanke S; Jaramillo MA; Borsch T; Samain MS; Quandt D; Neinhuis C
    Mol Phylogenet Evol; 2007 Feb; 42(2):477-97. PubMed ID: 16978885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae).
    Pabón-Mora N; Suárez-Baron H; Ambrose BA; González F
    Front Plant Sci; 2015; 6():1095. PubMed ID: 26697047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes.
    Wu CS; Wang RJ; Chaw SM
    BMC Biol; 2024 Jun; 22(1):140. PubMed ID: 38915079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.
    Park S; Ruhlman TA; Sabir JS; Mutwakil MH; Baeshen MN; Sabir MJ; Baeshen NA; Jansen RK
    BMC Genomics; 2014 May; 15(1):405. PubMed ID: 24884625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative analysis of plastome evolution in autotrophic Piperales.
    Jost M; Wanke S
    Am J Bot; 2024 Mar; 111(3):e16300. PubMed ID: 38469876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome.
    Qin L; Hu Y; Wang J; Wang X; Zhao R; Shan H; Li K; Xu P; Wu H; Yan X; Liu L; Yi X; Wanke S; Bowers JE; Leebens-Mack JH; dePamphilis CW; Soltis PS; Soltis DE; Kong H; Jiao Y
    Nat Plants; 2021 Sep; 7(9):1239-1253. PubMed ID: 34475528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia.
    Pabón-Mora N; Madrigal Y; Alzate JF; Ambrose BA; Ferrándiz C; Wanke S; Neinhuis C; González F
    New Phytol; 2020 Oct; 228(2):752-769. PubMed ID: 32491205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms.
    Massoni J; Forest F; Sauquet H
    Mol Phylogenet Evol; 2014 Jan; 70():84-93. PubMed ID: 24055602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids.
    Horn S; Pabón-Mora N; Theuß VS; Busch A; Zachgo S
    Plant J; 2015 Feb; 81(4):559-71. PubMed ID: 25557238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome.
    Iorizzo M; Senalik D; Szklarczyk M; Grzebelus D; Spooner D; Simon P
    BMC Plant Biol; 2012 May; 12():61. PubMed ID: 22548759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation.
    Chen J; Hao Z; Guang X; Zhao C; Wang P; Xue L; Zhu Q; Yang L; Sheng Y; Zhou Y; Xu H; Xie H; Long X; Zhang J; Wang Z; Shi M; Lu Y; Liu S; Guan L; Zhu Q; Yang L; Ge S; Cheng T; Laux T; Gao Q; Peng Y; Liu N; Yang S; Shi J
    Nat Plants; 2019 Jan; 5(1):18-25. PubMed ID: 30559417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly.
    Cruz Plancarte D; Solórzano S
    BMC Genomics; 2023 Aug; 24(1):509. PubMed ID: 37653379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Plastome Evolution in Holoparasitic Hydnoraceae with Special Focus on Inverted and Direct Repeats.
    Jost M; Naumann J; Bolin JF; Martel C; Rocamundi N; Cocucci AA; Lupton D; Neinhuis C; Wanke S
    Genome Biol Evol; 2022 May; 14(6):. PubMed ID: 35660863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria.
    Sanchez-Puerta MV; Cho Y; Mower JP; Alverson AJ; Palmer JD
    Mol Biol Evol; 2008 Aug; 25(8):1762-77. PubMed ID: 18524785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.