BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36896629)

  • 1. Two-Step Redox in Polyimide: Witness by In Situ Electron Paramagnetic Resonance in Lithium-ion Batteries.
    Bai Y; Wang Z; Qin N; Ma D; Fu W; Lu Z; Pan X
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202303162. PubMed ID: 36896629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries.
    Wang Z; Gu S; Cao L; Kong L; Wang Z; Qin N; Li M; Luo W; Chen J; Wu S; Liu G; Yuan H; Bai Y; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):514-521. PubMed ID: 33326203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost naphthaldiimide based organic cathode for rechargeable lithium-ion batteries.
    Wang Z; Zhang P; Li J; Zhang C; Jiang JX; Lv M; Ding Z; Zhang B
    Front Chem; 2022; 10():1056244. PubMed ID: 36465871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding anion-redox reactions in cathode materials of lithium-ion batteries through
    Hwang YY; Han JH; Park SH; Jung JE; Lee NK; Lee YJ
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 35042200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements.
    Kanzaki Y; Mitani S; Shiomi D; Morita Y; Takui T; Sato K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43631-43640. PubMed ID: 30461254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in Cycle Life of Organic Lithium-Ion Batteries by In-Cell Polymerization of Tetrathiafulvalene-Based Electrode Materials.
    Yoshimura A; Hemmi K; Moriwaki H; Sakakibara R; Kimura H; Aso Y; Kinoshita N; Suizu R; Shirahata T; Yao M; Yorimitsu H; Awaga K; Misaki Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35978-35984. PubMed ID: 35894872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonyl Bridge-Based p-π Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries.
    Zu Y; Xu Y; Ma L; Kang Q; Yao H; Hou J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18457-18464. PubMed ID: 32212633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Molecular Design of Redox-Active Carbonyl-Bridged Heterotriangulenes for High-Performance Lithium-Ion Batteries.
    Shu X; Hu L; Heine T; Jing Y
    Adv Sci (Weinh); 2024 Feb; 11(6):e2306680. PubMed ID: 38044304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage.
    Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X
    Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dealloyed Nanoporous Materials for Rechargeable Post-Lithium Batteries.
    Wu X; He G; Ding Y
    ChemSusChem; 2020 Jul; 13(13):3376-3390. PubMed ID: 32391967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries.
    Miao L; Liu L; Shang Z; Li Y; Lu Y; Cheng F; Chen J
    Phys Chem Chem Phys; 2018 May; 20(19):13478-13484. PubMed ID: 29726879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries.
    Lu Y; Cai Y; Zhang Q; Chen J
    Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting anion and cation redox chemistry in lithium-rich perovskite oxalate: a novel next-generation Li/Na-ion battery electrode.
    Pramanik A; Manche AG; Clulow R; Lightfoot P; Armstrong AR
    Dalton Trans; 2022 Aug; 51(33):12467-12475. PubMed ID: 35899863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries.
    Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X
    Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries.
    Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG
    ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.