These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36896629)

  • 81. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials.
    Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B
    Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries.
    Goujon N; Lahnsteiner M; Cerrón-Infantes DA; Moura HM; Mantione D; Unterlass MM; Mecerreyes D
    Mater Horiz; 2023 Mar; 10(3):967-976. PubMed ID: 36633135
    [TBL] [Abstract][Full Text] [Related]  

  • 83. In situ study of the magnetoelectrolysis phenomenon during copper electrodeposition using time domain NMR relaxometry.
    Gomes BF; Nunes LM; Lobo CM; Cabeça LF; Colnago LA
    Anal Chem; 2014 Oct; 86(19):9391-3. PubMed ID: 25162751
    [TBL] [Abstract][Full Text] [Related]  

  • 84. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials.
    Zhang L; Cheng F; Shi W; Chen J; Cheng P
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6398-6406. PubMed ID: 29383935
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Rechargeable Na/Cl
    Zhu G; Tian X; Tai HC; Li YY; Li J; Sun H; Liang P; Angell M; Huang CL; Ku CS; Hung WH; Jiang SK; Meng Y; Chen H; Lin MC; Hwang BJ; Dai H
    Nature; 2021 Aug; 596(7873):525-530. PubMed ID: 34433941
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon.
    Wang B; Fitzpatrick JR; Brookfield A; Fielding AJ; Reynolds E; Entwistle J; Tong J; Spencer BF; Baldock S; Hunter K; Kavanagh CM; Tapia-Ruiz N
    Nat Commun; 2024 Apr; 15(1):3013. PubMed ID: 38589362
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Redox Behavior of a Dinuclear Ruthenium(II) Complex Bearing an Uncommon Bridging Ligand: Insights from High-Pressure Electrochemistry.
    Dürr M; Klein J; Kahnt A; Becker S; Puchta R; Sarkar B; Ivanović-Burmazović I
    Inorg Chem; 2017 Dec; 56(24):14912-14925. PubMed ID: 29155569
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10.
    Strauss F; Rousse G; Alves Dalla Corte D; Ben Hassine M; Saubanère M; Tang M; Vezin H; Courty M; Dominko R; Tarascon JM
    Phys Chem Chem Phys; 2016 Jun; 18(22):14960-9. PubMed ID: 27189653
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage.
    Patil N; Aqil A; Ouhib F; Admassie S; Inganäs O; Jérôme C; Detrembleur C
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869678
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Unraveling the multivalent aluminium-ion redox mechanism in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA).
    Canever N; Nann T
    Phys Chem Chem Phys; 2022 Mar; 24(10):5886-5893. PubMed ID: 35195123
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries.
    Oubaha H; Gohy JF; Melinte S
    Chempluschem; 2019 Sep; 84(9):1179-1214. PubMed ID: 31944053
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Artificial Cathode-Electrolyte Interphase towards High-Performance Lithium-ion Batteries: A Case Study of β-AgVO
    Liu L; Dai W; Zhu H; Gu Y; Wang K; Li C; Pan C; Zhou M; Liu J
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668780
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W; Cheng F; Tao Z; Chen J
    J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.
    Cao R; Walter ED; Xu W; Nasybulin EN; Bhattacharya P; Bowden ME; Engelhard MH; Zhang JG
    ChemSusChem; 2014 Sep; 7(9):2436-40. PubMed ID: 25045007
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries.
    Yao L; Ma C; Sun L; Zhang D; Chen Y; Jin E; Song X; Liang Z; Wang KX
    J Am Chem Soc; 2022 Dec; 144(51):23534-23542. PubMed ID: 36512747
    [TBL] [Abstract][Full Text] [Related]  

  • 98. In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes.
    Chen CY; Sano T; Tsuda T; Ui K; Oshima Y; Yamagata M; Ishikawa M; Haruta M; Doi T; Inaba M; Kuwabata S
    Sci Rep; 2016 Oct; 6():36153. PubMed ID: 27782200
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fabrication of porous polyimide as cathode for high performance lithium-ion battery.
    Liu X; Xie M; Wei Y; Guo Y; Liu Z
    Chem Commun (Camb); 2023 Nov; 59(92):13743-13746. PubMed ID: 37909779
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Development of Novel Redox-Active Organic Materials Based on Benzimidazole, Benzoxazole, and Benzothiazole: A Combined Theoretical and Experimental Screening Approach.
    Fataj X; Achazi AJ; Rohland P; Schröter E; Muench S; Burges R; Pohl KLH; Mollenhauer D; Hager MD; Schubert US
    Chemistry; 2024 Jan; 30(6):e202302979. PubMed ID: 37950854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.