BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36896728)

  • 1. Is DFT Accurate Enough to Calculate Regioselectivity? The Case of 1,3-Dipolar Cycloaddition of Azide to Alkynes and Alkenes.
    Molteni G; Ponti A
    Chemphyschem; 2023 Jun; 24(12):e202300114. PubMed ID: 36896728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy of Concert and Origins of Regioselectivity for 1,3-Dipolar Cycloadditions of Diazomethane.
    Chen S; Hu T; Houk KN
    J Org Chem; 2021 May; 86(9):6840-6846. PubMed ID: 33858136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer
    Santra G; Martin JML
    J Phys Chem A; 2022 Dec; 126(50):9375-9391. PubMed ID: 36508714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual DFT analysis of the regioselectivity of 1,3-dipolar cycloadditions: nitrones as a case of study.
    Miranda-Quintana RA; González MM; Hernández-Castillo D; Montero-Cabrera LA; Ayers PW; Morell C
    J Mol Model; 2017 Aug; 23(8):236. PubMed ID: 28735497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the regioselectivity of iridium-catalyzed 1,3-dipolar azide-alkyne cycloaddition reactions.
    Luo Q; Jia G; Sun J; Lin Z
    J Org Chem; 2014 Dec; 79(24):11970-80. PubMed ID: 25222638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates.
    Lin B; Yu P; He CQ; Houk KN
    Bioorg Med Chem; 2016 Oct; 24(20):4787-4790. PubMed ID: 27501912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.
    Goerigk L; Grimme S
    Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Nitrilimine-Alkene Cycloaddition Regioselectivity Rationalized by Density Functional Theory Reactivity Indices.
    Molteni G; Ponti A
    Molecules; 2017 Jan; 22(2):. PubMed ID: 28134786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular mesoionics: understanding and controlling regioselectivity in 1,3-dipolar cycloadditions of Münchnone derivatives.
    Morin MS; St-Cyr DJ; Arndtsen BA; Krenske EH; Houk KN
    J Am Chem Soc; 2013 Nov; 135(46):17349-58. PubMed ID: 24134494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Accuracy of Density Functional Approximations for Predicting Hydrolysis Reaction Kinetics.
    Epstein AR; Spotte-Smith EWC; Venetos MC; Andriuc O; Persson KA
    J Chem Theory Comput; 2023 Jun; 19(11):3159-3171. PubMed ID: 37195097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance.
    Vermeeren P; Dalla Tiezza M; Wolf ME; Lahm ME; Allen WD; Schaefer HF; Hamlin TA; Bickelhaupt FM
    Phys Chem Chem Phys; 2022 Aug; 24(30):18028-18042. PubMed ID: 35861164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the regioselectivity of the mononuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC). A quantum chemical topological study.
    Calvo-Losada S; Pino MS; Quirante JJ
    J Mol Model; 2014 Apr; 20(4):2187. PubMed ID: 24664121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative relativistic DFT and ab initio study on the structure and thermodynamics of the oxofluorides of uranium(IV), (V) and (VI).
    Shamov GA; Schreckenbach G; Vo TN
    Chemistry; 2007; 13(17):4932-47. PubMed ID: 17373000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.