These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36896762)

  • 1. Biotransformation of ethylene glycol to glycolic acid by Yarrowia lipolytica: A route for poly(ethylene terephthalate) (PET) upcycling.
    Carniel A; Santos AG; Chinelatto LS; Castro AM; Coelho MAZ
    Biotechnol J; 2023 Jun; 18(6):e2200521. PubMed ID: 36896762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by
    Sales JCS; de Castro AM; Ribeiro BD; Coelho MAZ
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation.
    Kosiorowska KE; Biniarz P; Dobrowolski A; Leluk K; Mirończuk AM
    Sci Total Environ; 2022 Jul; 831():154841. PubMed ID: 35358523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of PETase by engineered Yarrowia lipolytica for efficient poly(ethylene terephthalate) biodegradation.
    Kosiorowska KE; Moreno AD; Iglesias R; Leluk K; Mirończuk AM
    Sci Total Environ; 2022 Nov; 846():157358. PubMed ID: 35850328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of ethylene glycol by engineered
    Yan W; Qi X; Cao Z; Yao M; Ding M; Yuan Y
    Synth Syst Biotechnol; 2024 Sep; 9(3):531-539. PubMed ID: 38645974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET).
    Sales JCS; de Castro AM; Ribeiro BD; Coelho MAZ
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2277-2287. PubMed ID: 34165618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of protein-rich waste by
    Wieczorek D; Gendaszewska D; Miśkiewicz K; Słubik A; Ławińska K
    Microbiol Spectr; 2023 Sep; 11(5):e0274923. PubMed ID: 37707427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica.
    Vong WC; Au Yang KL; Liu SQ
    Int J Food Microbiol; 2016 Oct; 235():1-9. PubMed ID: 27391864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration-Dependent Photocatalytic Upcycling of Poly(ethylene terephthalate) Plastic Waste.
    Kang H; Washington A; Capobianco MD; Yan X; Cruz VV; Weed M; Johnson J; Johns G; Brudvig GW; Pan X; Gu J
    ACS Mater Lett; 2023 Nov; 5(11):3032-3041. PubMed ID: 37969139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products.
    Diao J; Hu Y; Tian Y; Carr R; Moon TS
    Cell Rep; 2023 Jan; 42(1):111908. PubMed ID: 36640302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers.
    Gao R; Pan H; Kai L; Han K; Lian J
    World J Microbiol Biotechnol; 2022 Apr; 38(5):89. PubMed ID: 35426614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic and transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica.
    Li X; Ren JN; Fan G; He J; Zhang LL; Pan SY
    Microbiol Res; 2022 Jul; 260():127042. PubMed ID: 35483313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomes reveal metabolic capabilities of
    Walker C; Mortensen M; Poudel B; Cotter C; Myers R; Okekeogbu IO; Ryu S; Khomami B; Giannone RJ; Laursen S; Trinh CT
    mSystems; 2023 Dec; 8(6):e0074123. PubMed ID: 37882587
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Botelho A; Penha A; Fraga J; Barros-Timmons A; Coelho MA; Lehocky M; Štěpánková K; Amaral P
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32178341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes.
    Braun A; Geier M; Bühler B; Schmid A; Mauersberger S; Glieder A
    Microb Cell Fact; 2012 Aug; 11():106. PubMed ID: 22876969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives.
    Salusjärvi L; Havukainen S; Koivistoinen O; Toivari M
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2525-2535. PubMed ID: 30707252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving techno-economics of bioproduct glycolic acid by successive recycled-cell catalysis of ethylene glycol with Gluconobacter oxydans.
    Hua X; Zhou X; Xu Y
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1555-1559. PubMed ID: 29948215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics and biotransformation of diethylene glycol and ethylene glycol in the rat.
    Lenk W; Löhr D; Sonnenbichler J
    Xenobiotica; 1989 Sep; 19(9):961-79. PubMed ID: 2815837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.
    Back A; Rossignol T; Krier F; Nicaud JM; Dhulster P
    Microb Cell Fact; 2016 Aug; 15(1):147. PubMed ID: 27553851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica.
    Ferrara MA; Almeida DS; Siani AC; Lucchetti L; Lacerda PS; Freitas A; Tappin MR; Bon EP
    Braz J Microbiol; 2013 Dec; 44(4):1075-80. PubMed ID: 24688495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.