These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36896795)

  • 61. Evaluation of the drug-drug interaction potential of treosulfan using a physiologically-based pharmacokinetic modelling approach.
    Schaller S; Martins FS; Balazki P; Böhm S; Baumgart J; Hilger RA; Beelen DW; Hemmelmann C; Ring A
    Br J Clin Pharmacol; 2022 Feb; 88(4):1722-1734. PubMed ID: 34519068
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations.
    Pilla Reddy V; Bui K; Scarfe G; Zhou D; Learoyd M
    Clin Pharmacol Ther; 2019 Jan; 105(1):229-241. PubMed ID: 29717476
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Clinical assessment of gepotidacin (GSK2140944) as a victim and perpetrator of drug-drug interactions via CYP3A metabolism and transporters.
    Barth A; Perry CR; Shabbir S; Zamek-Gliszczynski MJ; Thomas S; Dumont EF; Brimhall DB; Nguyen D; Srinivasan M; Swift B
    Clin Transl Sci; 2023 Apr; 16(4):647-661. PubMed ID: 36642822
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physiologically Based Pharmacokinetic Modeling and Simulation of Mavacamten Exposure with Drug-Drug Interactions from CYP Inducers and Inhibitors by CYP2C19 Phenotype.
    Chiang M; Sychterz C; Perera V; Merali S; Palmisano M; Templeton IE; Gaohua L
    Clin Pharmacol Ther; 2023 Oct; 114(4):922-932. PubMed ID: 37467157
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of Guanfacine Extended-Release Dosing Strategies in Children and Adolescents with ADHD Using a Physiologically Based Pharmacokinetic Model to Predict Drug-Drug Interactions with Moderate CYP3A4 Inhibitors or Inducers.
    Li A; Yeo K; Welty D; Rong H
    Paediatr Drugs; 2018 Apr; 20(2):181-194. PubMed ID: 29098603
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Effects of Weak and Strong CYP3A Induction by Rifampicin on the Pharmacokinetics of Five Progestins and Ethinylestradiol Compared to Midazolam.
    Wiesinger H; Klein S; Rottmann A; Nowotny B; Riecke K; Gashaw I; Brudny-Klöppel M; Fricke R; Höchel J; Friedrich C
    Clin Pharmacol Ther; 2020 Oct; 108(4):798-807. PubMed ID: 32275771
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prediction of the drug-drug interaction potential of the α1-acid glycoprotein bound, CYP3A4/CYP2C9 metabolized oncology drug, erdafitinib.
    De Zwart L; Snoeys J; Jacobs F; Li LY; Poggesi I; Verboven P; Goris I; Scheers E; Wynant I; Monshouwer M; Mamidi RNVS
    CPT Pharmacometrics Syst Pharmacol; 2021 Sep; 10(9):1107-1118. PubMed ID: 34273250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physiologically based pharmacokinetic modeling of ponatinib to describe drug-drug interactions in patients with cancer.
    Morita TO; Hanada K
    Cancer Chemother Pharmacol; 2022 Oct; 90(4):315-323. PubMed ID: 35997844
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates.
    Fenneteau F; Poulin P; Nekka F
    J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation of CYP3A induction by PF-05251749 in early clinical development: comparison of linear slope physiologically based pharmacokinetic prediction and biomarker response.
    Lin J; Gaudreault F; Johnson N; Lin Z; Nouri P; Goosen TC; Sawant-Basak A
    Clin Transl Sci; 2022 Sep; 15(9):2184-2194. PubMed ID: 35730131
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amenamevir: Studies of Potential CYP3A-Mediated Pharmacokinetic Interactions With Midazolam, Cyclosporine, and Ritonavir in Healthy Volunteers.
    Adeloye T; Sahgal O; Puri A; Warrington S; Endo T; Dennison J; Johnston A
    Clin Pharmacol Drug Dev; 2018 Nov; 7(8):844-859. PubMed ID: 30044899
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exploring the impact of CYP2D6 and UGT2B7 gene-drug interactions, and CYP-mediated DDI on oxycodone and oxymorphone pharmacokinetics using physiologically-based pharmacokinetic modeling and simulation.
    Klose M; Cristofoletti R; Silva CM; Mangal N; Turgeon J; Michaud V; Lesko LJ; Schmidt S
    Eur J Pharm Sci; 2024 Mar; 194():106689. PubMed ID: 38171419
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of the Cytochrome P450 3A and P-glycoprotein Drug-Drug Interaction Potential of Futibatinib.
    Yamamiya I; Hunt A; Takenaka T; Sonnichsen D; Mina M; He Y; Benhadji KA; Gao L
    Clin Pharmacol Drug Dev; 2023 Oct; 12(10):966-978. PubMed ID: 37132707
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Physiologically-based pharmacokinetic modeling to predict drug interactions of lemborexant with CYP3A inhibitors.
    Ueno T; Miyajima Y; Landry I; Lalovic B; Schuck E
    CPT Pharmacometrics Syst Pharmacol; 2021 May; 10(5):455-466. PubMed ID: 33704920
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physiologically-Based Pharmacokinetic Models for CYP1A2 Drug-Drug Interaction Prediction: A Modeling Network of Fluvoxamine, Theophylline, Caffeine, Rifampicin, and Midazolam.
    Britz H; Hanke N; Volz AK; Spigset O; Schwab M; Eissing T; Wendl T; Frechen S; Lehr T
    CPT Pharmacometrics Syst Pharmacol; 2019 May; 8(5):296-307. PubMed ID: 30762305
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Application of physiologically based pharmacokinetic modelling for the prediction of drug-drug interactions involving anlotinib as a perpetrator of cytochrome P450 enzymes.
    Jin Z; He Q; Zhu X; Zhu M; Wang Y; Wu XA; Lv Q; Xiang X
    Basic Clin Pharmacol Toxicol; 2022 May; 130(5):592-605. PubMed ID: 35289081
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An Integrative Approach to Elucidate Mechanisms Underlying the Pharmacokinetic Goldenseal-Midazolam Interaction: Application of In Vitro Assays and Physiologically Based Pharmacokinetic Models to Understand Clinical Observations.
    Nguyen JT; Tian DD; Tanna RS; Arian CM; Calamia JC; Rettie AE; Thummel KE; Paine MF
    J Pharmacol Exp Ther; 2023 Dec; 387(3):252-264. PubMed ID: 37541764
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predicting drug interaction potential with a physiologically based pharmacokinetic model: a case study of telithromycin, a time-dependent CYP3A inhibitor.
    Vieira ML; Zhao P; Berglund EG; Reynolds KS; Zhang L; Lesko LJ; Huang SM
    Clin Pharmacol Ther; 2012 Apr; 91(4):700-8. PubMed ID: 22398966
    [TBL] [Abstract][Full Text] [Related]  

  • 79. PBPK Modeling Strategy for Predicting Complex Drug Interactions of Letermovir as a Perpetrator in Support of Product Labeling.
    Wang YH; Chen D; Hartmann G; Cho CR; Menzel K
    Clin Pharmacol Ther; 2019 Feb; 105(2):515-523. PubMed ID: 29901213
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prediction of Drug-Drug Interactions After Esketamine Intranasal Administration Using a Physiologically Based Pharmacokinetic Model.
    Willemin ME; Zannikos P; Mannens G; de Zwart L; Snoeys J
    Clin Pharmacokinet; 2022 Aug; 61(8):1115-1128. PubMed ID: 35579824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.