BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36897030)

  • 1. ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides.
    Li Z; Jin J; Wang Y; Long W; Ding Y; Hu H; Wei L
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36897030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Effective Plant Small Secretory Peptide Recognition Model Based on Feature Correction Strategy.
    Wang R; Zhou Z; Wu X; Jiang X; Zhuo L; Liu M; Li H; Fu X; Yao X
    J Chem Inf Model; 2024 Apr; 64(7):2798-2806. PubMed ID: 37643082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants.
    Hu XL; Lu H; Hassan MM; Zhang J; Yuan G; Abraham PE; Shrestha HK; Villalobos Solis MI; Chen JG; Tschaplinski TJ; Doktycz MJ; Tuskan GA; Cheng ZM; Yang X
    Hortic Res; 2021 Jun; 8(1):130. PubMed ID: 34059650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization.
    Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AntiMF: A deep learning framework for predicting anticancer peptides based on multi-view feature extraction.
    Liu J; Li M; Chen X
    Methods; 2022 Nov; 207():38-43. PubMed ID: 36100141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoraL: interpretable contrastive meta-learning for the prediction of cancer-associated ncRNA-encoded small peptides.
    Li Z; Jin J; He W; Long W; Yu H; Gao X; Nakai K; Zou Q; Wei L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating bioactive peptide discovery via mutual information-based meta-learning.
    He W; Jiang Y; Jin J; Li Z; Zhao J; Manavalan B; Su R; Gao X; Wei L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism.
    Liang X; Zhao H; Wang J
    Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
    Yaseen A; Gull S; Akhtar N; Amin I; Minhas F
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150021. PubMed ID: 34353244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using explainable machine learning to uncover the kinase-substrate interaction landscape.
    Zhou Z; Yeung W; Soleymani S; Gravel N; Salcedo M; Li S; Kannan N
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.