BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36897030)

  • 21. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. prPred-DRLF: Plant R protein predictor using deep representation learning features.
    Wang Y; Xu L; Zou Q; Lin C
    Proteomics; 2022 Jan; 22(1-2):e2100161. PubMed ID: 34569713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do deep learning models make a difference in the identification of antimicrobial peptides?
    García-Jacas CR; Pinacho-Castellanos SA; García-González LA; Brizuela CA
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SiameseCPP: a sequence-based Siamese network to predict cell-penetrating peptides by contrastive learning.
    Zhang X; Wei L; Ye X; Zhang K; Teng S; Li Z; Jin J; Kim MJ; Sakurai T; Cui L; Manavalan B; Wei L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36562719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of plant vacuole proteins by exploiting deep representation learning features.
    Jiao S; Zou Q
    Comput Struct Biotechnol J; 2022; 20():2921-2927. PubMed ID: 35765653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning.
    Wang X; Li F; Xu J; Rong J; Webb GI; Ge Z; Li J; Song J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35176756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning.
    Wei L; Zhou C; Su R; Zou Q
    Bioinformatics; 2019 Nov; 35(21):4272-4280. PubMed ID: 30994882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning.
    Li Y; Zeng M; Zhang F; Wu FX; Li M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36458923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides.
    Zhang J; Zhang Z; Pu L; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1831-1840. PubMed ID: 31985437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.