These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36897030)

  • 41. deepHPI: a comprehensive deep learning platform for accurate prediction and visualization of host-pathogen protein-protein interactions.
    Kaundal R; Loaiza CD; Duhan N; Flann N
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DbyDeep: Exploration of MS-Detectable Peptides via Deep Learning.
    Son J; Na S; Paek E
    Anal Chem; 2023 Aug; 95(30):11193-11200. PubMed ID: 37459568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism.
    Zhao Q; Zhao H; Zheng K; Wang J
    Bioinformatics; 2022 Jan; 38(3):655-662. PubMed ID: 34664614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An integration of deep learning with feature embedding for protein-protein interaction prediction.
    Yao Y; Du X; Diao Y; Zhu H
    PeerJ; 2019; 7():e7126. PubMed ID: 31245182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening.
    Wan F; Zhu Y; Hu H; Dai A; Cai X; Chen L; Gong H; Xia T; Yang D; Wang MW; Zeng J
    Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):478-495. PubMed ID: 32035227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning.
    Zhang YP; Zou Q
    Bioinformatics; 2020 Jul; 36(13):3982-3987. PubMed ID: 32348463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues.
    Li YL; Dai XR; Yue X; Gao XQ; Zhang XS
    Planta; 2014 Oct; 240(4):713-28. PubMed ID: 25048445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model.
    Yan K; Lv H; Guo Y; Chen Y; Wu H; Liu B
    Bioinformatics; 2022 May; 38(10):2712-2718. PubMed ID: 35561206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Explainable Deep Hypergraph Learning Modeling the Peptide Secondary Structure Prediction.
    Jiang Y; Wang R; Feng J; Jin J; Liang S; Li Z; Yu Y; Ma A; Su R; Zou Q; Ma Q; Wei L
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206151. PubMed ID: 36794291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms.
    Wei L; Hu J; Li F; Song J; Su R; Zou Q
    Brief Bioinform; 2020 Jan; 21(1):106-119. PubMed ID: 30383239
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DeepTPpred: A Deep Learning Approach With Matrix Factorization for Predicting Therapeutic Peptides by Integrating Length Information.
    Cui Z; Wang SG; He Y; Chen ZH; Zhang QH
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4611-4622. PubMed ID: 37368803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions.
    Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J
    Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening.
    Wang P; Yao S; Kosami KI; Guo T; Li J; Zhang Y; Fukao Y; Kaneko-Kawano T; Zhang H; She YM; Wang P; Xing W; Hanada K; Liu R; Kawano Y
    Plant Biotechnol J; 2020 Feb; 18(2):415-428. PubMed ID: 31301098
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PhosVarDeep: deep-learning based prediction of phospho-variants using sequence information.
    Liu X; Wang M; Li A
    PeerJ; 2022; 10():e12847. PubMed ID: 35310161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response.
    Liu C; Xiang D; Wu Q; Ye X; Yan H; Zhao G; Zou L
    Plant Sci; 2021 Dec; 313():111091. PubMed ID: 34763875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.