These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36897054)

  • 21. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values.
    Salim R; Taherparvar P
    Radiat Environ Biophys; 2019 Aug; 58(3):353-371. PubMed ID: 30927051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of absorbed gamma dose rate from granite by Monte Carlo simulation approach.
    Knežević J; Kuzmanović P; Mrdja D; Todorović N; Bikit I; Hansman J
    J Radiol Prot; 2020 Jun; 40(2):596-611. PubMed ID: 32320954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Considerations for applying VARSKIN mod 2 to skin dose calculations averaged over 10 cm2.
    Durham JS
    Health Phys; 2004 Feb; 86(2 Suppl):S11-4. PubMed ID: 14744063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters.
    Zagni F; Cicoria G; Lucconi G; Infantino A; Lodi F; Marengo M
    Appl Radiat Isot; 2014 Dec; 94():158-165. PubMed ID: 25195174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Occupational skin dose from radionuclide contamination: one country's approach at standardising skin dose estimates using Varskin.
    Sharpe K; McCallum S; O'Neill J; Paterson C; McCormick J; Sexton K
    J Radiol Prot; 2024 Apr; 44(2):. PubMed ID: 38507787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental validation of Monte Carlo dosimetry for therapeutic beta emitters with radiochromic film in a 3D-printed phantom.
    Van B; Dewaraja YK; Niedbala JT; Rosebush G; Kazmierski M; Hubers D; Mikell JK; Wilderman SJ
    Med Phys; 2023 Jan; 50(1):540-556. PubMed ID: 35983857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dosimetry assessment of theranostic Auger-emitting radionuclides in a micron-sized multicellular cluster model: A Monte Carlo study using Geant4-DNA simulations.
    Salim R; Taherparvar P
    Appl Radiat Isot; 2022 Oct; 188():110380. PubMed ID: 35868198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular S values in spindle-shaped cells: a dosimetry study on more realistic cell geometries using Geant4-DNA Monte Carlo simulation toolkit.
    Salim R; Taherparvar P
    Ann Nucl Med; 2020 Oct; 34(10):742-756. PubMed ID: 32632563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dosimetry characterization of 32P intravascular brachytherapy source wires using Monte Carlo codes PENELOPE and GEANT4.
    Torres J; Buades MJ; Almansa JF; Guerrero R; Lallena AM
    Med Phys; 2004 Feb; 31(2):296-304. PubMed ID: 15000615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geant4-Simulations for cellular dosimetry in nuclear medicine.
    Freudenberg R; Wendisch M; Kotzerke J
    Z Med Phys; 2011 Dec; 21(4):281-9. PubMed ID: 21983023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics.
    Carrier JF; Archambault L; Beaulieu L; Roy R
    Med Phys; 2004 Mar; 31(3):484-92. PubMed ID: 15070244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing dose rates near a radioactive patient evaluated using various source models: point, line, cylinder, and anthropomorphic phantoms.
    Liu YC; Lee KW; Sheu RJ
    Health Phys; 2015 Jul; 109(1):69-77. PubMed ID: 26011499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coincidence summing corrections using PENELOPE/PENNUC Monte Carlo code for volume sources of different densities.
    Salpadimos N; Karfopoulos K; Seimenis I; Potiriadis C
    Appl Radiat Isot; 2023 Feb; 192():110589. PubMed ID: 36493678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G; Pater P; Enger SA
    Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of encapsulated 170Tm sources for their potential use in brachytherapy.
    Ballester F; Granero D; Perez-Calatayud J; Venselaar JL; Rivard MJ
    Med Phys; 2010 Apr; 37(4):1629-37. PubMed ID: 20443484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eye-lens dose rate conversion factors due to hot particles and surface contaminations on the cornea.
    Dubeau J; Djeffal S; Sun J; Ali F
    J Radiol Prot; 2023 Jan; 42(4):. PubMed ID: 36538825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part I. Development and validation of methods using the CT image.
    Wang J; Duan X; Christner JA; Leng S; Yu L; McCollough CH
    Med Phys; 2012 Nov; 39(11):6764-71. PubMed ID: 23127070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4.
    Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K
    Phys Med Biol; 2020 Mar; 65(5):055015. PubMed ID: 31962306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2012 Jun; 39(6):3509-19. PubMed ID: 22755731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.