These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36897184)

  • 61. Lossless online ensemble learning (LOEL) and its application to subcortical segmentation.
    Morra JH; Tu Z; Toga AW; Thompson PM
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):432-40. PubMed ID: 20426141
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MetaAge: Meta-Learning Personalized Age Estimators.
    Li W; Lu J; Wuerkaixi A; Feng J; Zhou J
    IEEE Trans Image Process; 2022; 31():4761-4775. PubMed ID: 35816526
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data.
    Ehrhart M; Resch B; Havas C; Niederseer D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015730
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling.
    Tuladhar A; Gill S; Ismail Z; Forkert ND;
    J Biomed Inform; 2020 Jun; 106():103424. PubMed ID: 32335226
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Personalized treatment for coronary artery disease patients: a machine learning approach.
    Bertsimas D; Orfanoudaki A; Weiner RB
    Health Care Manag Sci; 2020 Dec; 23(4):482-506. PubMed ID: 33040231
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams.
    Wang Y; Jin H; Chen X; Wang B; Yang B; Qian B
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772560
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Online Passive-Aggressive Active Learning for Trapezoidal Data Streams.
    Liu Y; Fan X; Li W; Gao Y
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):6725-6739. PubMed ID: 35675249
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Machine learning methods for leveraging baseline covariate information to improve the efficiency of clinical trials.
    Zhang Z; Ma S
    Stat Med; 2019 May; 38(10):1703-1714. PubMed ID: 30474289
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Estimating Multilevel Models on Data Streams.
    Ippel L; Kaptein MC; Vermunt JK
    Psychometrika; 2019 Mar; 84(1):41-64. PubMed ID: 30671789
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evolving Spiking Neural Networks for online learning over drifting data streams.
    Lobo JL; Laña I; Del Ser J; Bilbao MN; Kasabov N
    Neural Netw; 2018 Dec; 108():1-19. PubMed ID: 30130678
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Machine Learning Analysis of Time-Dependent Features for Predicting Adverse Events During Hemodialysis Therapy: Model Development and Validation Study.
    Liu YS; Yang CY; Chiu PF; Lin HC; Lo CC; Lai AS; Chang CC; Lee OK
    J Med Internet Res; 2021 Sep; 23(9):e27098. PubMed ID: 34491204
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study.
    Allen A; Mataraso S; Siefkas A; Burdick H; Braden G; Dellinger RP; McCoy A; Pellegrini E; Hoffman J; Green-Saxena A; Barnes G; Calvert J; Das R
    JMIR Public Health Surveill; 2020 Oct; 6(4):e22400. PubMed ID: 33090117
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams.
    Mohamad S; Bouchachia A; Sayed-Mouchaweh M
    IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):74-86. PubMed ID: 27775910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.
    Marucci-Wellman HR; Corns HL; Lehto MR
    Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An intelligent warning model for early prediction of cardiac arrest in sepsis patients.
    Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T
    Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL).
    Jebelli H; Mahdi Khalili M; Lee S
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1928-1939. PubMed ID: 30235150
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automatic Grading of Stroke Symptoms for Rapid Assessment Using Optimized Machine Learning and 4-Limb Kinematics: Clinical Validation Study.
    Park E; Lee K; Han T; Nam HS
    J Med Internet Res; 2020 Sep; 22(9):e20641. PubMed ID: 32936079
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fast and Robust Visual Tracking with Few-Iteration Meta-Learning.
    Li Z; Zhang X; Xu L; Zhang W
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957383
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimal Spatial Prediction Using Ensemble Machine Learning.
    Davies MM; van der Laan MJ
    Int J Biostat; 2016 May; 12(1):179-201. PubMed ID: 27130244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.