These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36897187)
1. Remodeling Tumor Immunogenicity with Dual-Activatable Binary CRISPR Nanomedicine for Cancer Immunotherapy. Xing Y; Yang J; Wang Y; Wang C; Pan Z; Liu FL; Liu Y; Liu Q ACS Nano; 2023 Mar; 17(6):5713-5726. PubMed ID: 36897187 [TBL] [Abstract][Full Text] [Related]
2. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy. Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671 [TBL] [Abstract][Full Text] [Related]
3. Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. Lu Q; Qi S; Li P; Yang L; Yang S; Wang Y; Cheng Y; Song Y; Wang S; Tan F; Li N J Mater Chem B; 2019 Apr; 7(15):2499-2511. PubMed ID: 32255127 [TBL] [Abstract][Full Text] [Related]
4. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189 [TBL] [Abstract][Full Text] [Related]
5. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. Liu J; Li G; Guo H; Ni C; Gao Y; Cao X; Xia J; Shi X; Guo R ACS Appl Mater Interfaces; 2023 Mar; 15(10):12809-12821. PubMed ID: 36853989 [TBL] [Abstract][Full Text] [Related]
6. Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Wang C; Shi X; Song H; Zhang C; Wang X; Huang P; Dong A; Zhang Y; Kong D; Wang W Biomaterials; 2021 Jan; 268():120579. PubMed ID: 33278683 [TBL] [Abstract][Full Text] [Related]
7. Dendritic polymer-functionalized nanomedicine potentiates immunotherapy via lethal energy crisis-induced PD-L1 degradation. Li X; Duan Z; Li Z; Gu L; Li Y; Gong Q; Gu Z; Luo K Biomaterials; 2023 Nov; 302():122294. PubMed ID: 37657175 [TBL] [Abstract][Full Text] [Related]
8. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737 [TBL] [Abstract][Full Text] [Related]
9. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y; Chen C; Guo Y; Hu S; Sun Z Front Immunol; 2022; 13():848327. PubMed ID: 35300341 [TBL] [Abstract][Full Text] [Related]
10. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. Yu X; Long Y; Chen B; Tong Y; Shan M; Jia X; Hu C; Liu M; Zhou J; Tang F; Lu H; Chen R; Xu P; Huang W; Ren J; Wan Y; Sun J; Li J; Jin G; Gong L J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36253000 [TBL] [Abstract][Full Text] [Related]
11. Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD-L1 Expression for Circumventing Immune Resistance of Cancer. Zhou F; Gao J; Tang Y; Zou Z; Jiao S; Zhou Z; Xu H; Xu ZP; Yu H; Xu Z Adv Mater; 2021 Oct; 33(43):e2102668. PubMed ID: 34463392 [TBL] [Abstract][Full Text] [Related]
12. Injectable microenvironment-responsive hydrogels with redox-activatable supramolecular prodrugs mediate ferroptosis-immunotherapy for postoperative tumor treatment. Cheng Z; Xue C; Liu M; Cheng Z; Tian G; Li M; Xue R; Yao X; Zhang Y; Luo Z Acta Biomater; 2023 Oct; 169():289-305. PubMed ID: 37544392 [TBL] [Abstract][Full Text] [Related]
13. Charge reversal yolk-shell liposome co-loaded JQ1 and doxorubicin with high drug loading and optimal ratio for synergistically enhanced tumor chemo-immunotherapy via blockade PD-L1 pathway. Liu D; Li K; Gong L; Fu L; Yang D Int J Pharm; 2023 Mar; 635():122728. PubMed ID: 36796659 [TBL] [Abstract][Full Text] [Related]
14. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Lu Q; Chen R; Du S; Chen C; Pan Y; Luan X; Yang J; Zeng F; He B; Han X; Song Y Biomaterials; 2022 Dec; 291():121871. PubMed ID: 36323073 [TBL] [Abstract][Full Text] [Related]
15. The programmed site-specific delivery of LY3200882 and PD-L1 siRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment. Zhang P; Qin C; Liu N; Zhou X; Chu X; Lv F; Gu Y; Yin L; Liu J; Zhou J; Huo M Biomaterials; 2022 May; 284():121518. PubMed ID: 35462305 [TBL] [Abstract][Full Text] [Related]
16. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy. Zhao L; Li D; Zhang Y; Huang Q; Zhang Z; Chen C; Xu CF; Chu X; Zhang Y; Yang X ACS Nano; 2022 Sep; 16(9):13821-13833. PubMed ID: 35993350 [TBL] [Abstract][Full Text] [Related]
17. PD-L1 siRNA-hyaluronic acid conjugate for dual-targeted cancer immunotherapy. Kim S; Heo R; Song SH; Song KH; Shin JM; Oh SJ; Lee HJ; Chung JE; Park JH; Kim TW J Control Release; 2022 Jun; 346():226-239. PubMed ID: 35461969 [TBL] [Abstract][Full Text] [Related]
18. PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. Hirata-Nozaki Y; Ohkuri T; Ohara K; Kumai T; Nagata M; Harabuchi S; Kosaka A; Nagato T; Ishibashi K; Oikawa K; Aoki N; Ohara M; Harabuchi Y; Uno Y; Takei H; Celis E; Kobayashi H J Transl Med; 2019 Jun; 17(1):207. PubMed ID: 31221178 [TBL] [Abstract][Full Text] [Related]
19. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Tu J; Xu H; Ma L; Li C; Qin W; Chen X; Yi M; Sun L; Liu B; Yuan X Theranostics; 2022; 12(2):747-766. PubMed ID: 34976211 [No Abstract] [Full Text] [Related]
20. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]