These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36897569)

  • 1. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet impacting on pillared hydrophobic surfaces with different solid fractions.
    Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D
    J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding droplets of Xanthan solutions: A joint experimental and numerical study.
    Varagnolo S; Mistura G; Pierno M; Sbragaglia M
    Eur Phys J E Soft Matter; 2015 Nov; 38(11):126. PubMed ID: 26614497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet impact of blood and blood simulants on a solid surface: Effect of the deformability of red blood cells and the elasticity of plasma.
    Yokoyama Y; Tanaka A; Tagawa Y
    Forensic Sci Int; 2022 Feb; 331():111138. PubMed ID: 34906891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids.
    Sun K; Wang T; Zhang P; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023009. PubMed ID: 25768599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces.
    Biroun MH; Haworth L; Abdolnezhad H; Khosravi A; Agrawal P; McHale G; Torun H; Semprebon C; Jabbari M; Fu YQ
    Langmuir; 2023 Apr; 39(16):5793-5802. PubMed ID: 37041655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impinging blood droplets on different wettable surfaces: Impact phenomena, contact line motion, post-impact oscillation and dried stains.
    Xiang S; Liu Y; Tang Q; Jin Y; Fan J; Chen L
    Sci Justice; 2023 Jul; 63(4):517-528. PubMed ID: 37453784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and Dynamics of Janus Droplets in Shear-Thinning Fluid Flow in a Double Y-Type Microchannel.
    Bai F; Zhang H; Li X; Li F; Joo SW
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Droplet Impacting on an Immiscible Liquid via Three-Phase Field Method.
    Hu Q; Hu F; Xu D; Zhang K
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Newtonian Droplet Generation in a Cross-Junction Microfluidic Channel.
    Fatehifar M; Revell A; Jabbari M
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double Droplets Impact an Inclined Superhydrophobic Surface.
    Gao SR; Huang XY; Liu Z; Sun JJ; Yang YR; Wang XD
    Langmuir; 2024 Jun; 40(24):12818-12827. PubMed ID: 38842118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing and internal dynamics of droplets impacting and coalescing on a solid surface.
    Castrejón-Pita JR; Kubiak KJ; Castrejón-Pita AA; Wilson MC; Hutchings IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023023. PubMed ID: 24032939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole Contact Line Pinning for Droplets Impacting on a Hydrophobic Surface Due to Hydrophilic TiO
    Li Y; Zhou J; Hu M; Jing D
    Langmuir; 2021 Jun; 37(22):6673-6680. PubMed ID: 34030443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.