These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 36897699)
1. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database. Sun H; Wu S; Li S; Jiang X Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699 [TBL] [Abstract][Full Text] [Related]
2. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
4. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
5. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504 [TBL] [Abstract][Full Text] [Related]
6. A prediction model based on random survival forest analysis of the overall survival of elderly female papillary thyroid carcinoma patients: a SEER-based study. Lun Y; Yuan H; Ma P; Chen J; Lu P; Wang W; Liang R; Zhang J; Gao W; Ding X; Li S; Wang Z; Guo J; Lu L Endocrine; 2024 Sep; 85(3):1252-1260. PubMed ID: 38558373 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the Tree-Based Machine Learning Algorithms to Cox Regression in Predicting the Survival of Oral and Pharyngeal Cancers: Analyses Based on SEER Database. Du M; Haag DG; Lynch JW; Mittinty MN Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003533 [TBL] [Abstract][Full Text] [Related]
8. Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models. Xia K; Chen D; Jin S; Yi X; Luo L Sci Rep; 2023 Sep; 13(1):14827. PubMed ID: 37684259 [TBL] [Abstract][Full Text] [Related]
9. [Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma]. Ji GW; Wang K; Xia YX; Li XC; Wang XH Zhonghua Wai Ke Za Zhi; 2021 Aug; 59(8):679-685. PubMed ID: 34192861 [No Abstract] [Full Text] [Related]
10. Comparison of nomogram with random survival forest for prediction of survival in patients with spindle cell carcinoma. Zhang X; Liang J; Du Z; Xie Q; Li T; Tang F J Cancer Res Ther; 2022 Dec; 18(7):2006-2012. PubMed ID: 36647963 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
12. Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study. Baralou V; Kalpourtzi N; Touloumi G Biom J; 2023 Aug; 65(6):e2100380. PubMed ID: 36169048 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based overall and cancer-specific survival prediction of M0 penile squamous cell carcinoma:A population-based retrospective study. Chen D; Liang S; Chen J; Li K; Mi H Heliyon; 2024 Jan; 10(1):e23442. PubMed ID: 38163093 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114 [TBL] [Abstract][Full Text] [Related]
16. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
17. Use of survival support vector machine combined with random survival forest to predict the survival of nasopharyngeal carcinoma patients. Xiao Z; Song Q; Wei Y; Fu Y; Huang D; Huang C Transl Cancer Res; 2023 Dec; 12(12):3581-3590. PubMed ID: 38192980 [TBL] [Abstract][Full Text] [Related]
18. Novel head and neck cancer survival analysis approach: random survival forests versus Cox proportional hazards regression. Datema FR; Moya A; Krause P; Bäck T; Willmes L; Langeveld T; Baatenburg de Jong RJ; Blom HM Head Neck; 2012 Jan; 34(1):50-8. PubMed ID: 21322080 [TBL] [Abstract][Full Text] [Related]
19. Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China. Wang M; Li Z; Zeng S; Wang Z; Ying Y; He W; Zhang Z; Wang H; Xu C Cancer Med; 2024 Jun; 13(11):e7324. PubMed ID: 38847519 [TBL] [Abstract][Full Text] [Related]
20. Development and visualization of a risk prediction model for metabolic syndrome: a longitudinal cohort study based on health check-up data in China. Liu W; Tang X; Cui T; Zhao H; Song G Front Nutr; 2023; 10():1286654. PubMed ID: 38075230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]