These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Impact of Oxygen Surface Coverage and Carbidic Carbon on the Activity and Selectivity of Two-Dimensional Molybdenum Carbide (2D-Mo Kountoupi E; Barrios AJ; Chen Z; Müller CR; Ordomsky VV; Comas-Vives A; Fedorov A ACS Catal; 2024 Feb; 14(3):1834-1845. PubMed ID: 38327645 [TBL] [Abstract][Full Text] [Related]
4. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer-Tropsch Synthesis over Transition Metals. Jamaati M; Torkashvand M; Sarabadani Tafreshi S; de Leeuw NH Molecules; 2023 Sep; 28(18):. PubMed ID: 37764301 [TBL] [Abstract][Full Text] [Related]
5. Computational investigation of the kinetics and mechanism of the initial steps of the Fischer-Tropsch synthesis on cobalt. van Helden P; Berg JVD; Petersen MA; Janse van Rensburg W; Ciobîcă IM; van de Loosdrecht J Faraday Discuss; 2017 Apr; 197():117-151. PubMed ID: 28186212 [TBL] [Abstract][Full Text] [Related]
6. Liu QY; Shang C; Liu ZP J Am Chem Soc; 2021 Jul; 143(29):11109-11120. PubMed ID: 34278799 [No Abstract] [Full Text] [Related]
7. Insight into the Fischer-Tropsch mechanism on hcp-Fe Ren J; Ai N; Yu Y RSC Adv; 2021 Oct; 11(55):34533-34543. PubMed ID: 35494742 [TBL] [Abstract][Full Text] [Related]
8. Insights into the mechanism of carbon chain growth on zeolite-based Fischer-Tropsch Co/Y catalysts. Dong X; Li J; Ma T; Wang L Phys Chem Chem Phys; 2022 Jun; 24(24):14751-14762. PubMed ID: 35678305 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions. Lyu S; Wang L; Li Z; Yin S; Chen J; Zhang Y; Li J; Wang Y Nat Commun; 2020 Dec; 11(1):6219. PubMed ID: 33277482 [TBL] [Abstract][Full Text] [Related]
10. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. Chen J; Liu ZP J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384 [TBL] [Abstract][Full Text] [Related]
12. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis. Huo CF; Li YW; Wang J; Jiao H J Am Chem Soc; 2009 Oct; 131(41):14713-21. PubMed ID: 19780531 [TBL] [Abstract][Full Text] [Related]
13. The optimally performing Fischer-Tropsch catalyst. Filot IA; van Santen RA; Hensen EJ Angew Chem Int Ed Engl; 2014 Nov; 53(47):12746-50. PubMed ID: 25168456 [TBL] [Abstract][Full Text] [Related]
17. Mechanism and microkinetics of the Fischer-Tropsch reaction. van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478 [TBL] [Abstract][Full Text] [Related]
18. A Brief Review of Recent Theoretical Advances in Fe-Based Catalysts for CO Tang H; Qiu T; Wang X; Zhang C; Zhang Z Molecules; 2024 Mar; 29(6):. PubMed ID: 38542831 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru. Mirwald JW; Inderwildi OR Phys Chem Chem Phys; 2012 May; 14(19):7028-31. PubMed ID: 22482113 [TBL] [Abstract][Full Text] [Related]
20. Highly Efficient ZIF-67-Derived PtCo Alloy-CN Interface for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis. Gahtori J; Tucker CL; Khan TS; de Sá Codeço C; Rocha T; Bordoloi A ACS Appl Mater Interfaces; 2022 Aug; 14(34):38905-38920. PubMed ID: 35973160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]