BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36897883)

  • 41. The influence of single carbon atom impurity on the electronic transport of (6, 3) two side-closed single-walled boron nitride nanotubes.
    Yadollahi AM; Niazian MR
    J Mol Model; 2023 Apr; 29(5):133. PubMed ID: 37036594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen adsorption on lithium clusters coordinated to a gC
    Guardado A; Marisol IR; Mayén-Mondragón R; Sánchez M
    J Mol Graph Model; 2023 Jul; 122():108491. PubMed ID: 37126909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage.
    Ding RG; Lu GQ; Yan ZF; Wilson MA
    J Nanosci Nanotechnol; 2001 Mar; 1(1):7-29. PubMed ID: 12914026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring adsorption mechanism of hydrogen cyanide and cyanogen chloride molecules on arsenene nanoribbon from first-principles.
    Bhuvaneswari R; Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2019 Jun; 89():13-21. PubMed ID: 30844605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    J Comput Chem; 2014 May; 35(14):1058-63. PubMed ID: 24659221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices.
    Raissi H; Mollania F
    Eur J Pharm Sci; 2014 Jun; 56():37-54. PubMed ID: 24566615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.
    Rawat DS; Krungleviciute V; Heroux L; Bulut M; Calbi MM; Migone AD
    Langmuir; 2008 Dec; 24(23):13465-9. PubMed ID: 18954094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of hydrogen-edged boron nitride flakes with lithium: boron nitride as a protecting layer for a lithium-ion battery and a spin-dependent photon emission device.
    Kheirabadi N; Shafiekhani A
    Nanotechnology; 2021 Apr; 32(18):180001. PubMed ID: 33498019
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective adsorption and dissociation of NO, NO
    Hassanpour A; Kamel M; Ebrahimiasl S; Ebadi AG; Arshadi S; Ghulinezhad Ahangari Z
    J Mol Model; 2021 Dec; 28(1):6. PubMed ID: 34889992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes.
    Santosh M; Maiti PK; Sood AK
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5425-30. PubMed ID: 19928237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications.
    Velázquez-López LF; Pacheco-Ortin SM; Mejía-Olvera R; Agacino-Valdés E
    J Mol Model; 2019 Mar; 25(4):91. PubMed ID: 30852668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical reduction of nitrate on boron-doped diamond electrodes: Effects of surface termination and boron-doping level.
    Kuang P; Natsui K; Feng C; Einaga Y
    Chemosphere; 2020 Jul; 251():126364. PubMed ID: 32443231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Study of Phosgene Gas Sensing Using Carbon and Boron Nitride Nanomaterials-A DFT Approach.
    Kweitsu EO; Armoo SK; Kan-Dapaah K; Abavare EKK; Dodoo-Arhin D; Yaya A
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.
    Ganji MD; Rezvani M
    J Mol Model; 2013 Mar; 19(3):1259-65. PubMed ID: 23179768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemically modified ribbon edge stimulated H2 dissociation: a first-principles computational study.
    Liao T; Sun C; Sun Z; Du A; Smith S
    Phys Chem Chem Phys; 2013 Jun; 15(21):8054-7. PubMed ID: 23632601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing.
    Wongchoosuk C; Wisitsoraat A; Phokharatkul D; Tuantranont A; Kerdcharoen T
    Sensors (Basel); 2010; 10(8):7705-15. PubMed ID: 22163623
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption of a thione derivative on carbon, AlN, and BN nanotubes: a detailed DFT and MD investigation.
    Al-Otaibi JS; Shabeer M; Mary YS; Mary YS; Thomas R
    J Mol Model; 2022 Jun; 28(7):181. PubMed ID: 35668144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes.
    Liu H; Turner CH
    Phys Chem Chem Phys; 2014 Nov; 16(41):22853-60. PubMed ID: 25242148
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determining the gas composition for the growth of BNNTs using a thermodynamic approach.
    Khrabry A; Kaganovich ID; Yatom S; Vekselman V; Radić-Perić J; Rodman J; Raitses Y
    Phys Chem Chem Phys; 2019 Jun; 21(24):13268-13286. PubMed ID: 31183487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.