These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36898003)

  • 1. Modeling the Infrared Spectroscopy of Oligonucleotides with
    Meng W; Peng HC; Liu Y; Stelling A; Wang L
    J Phys Chem B; 2023 Mar; 127(11):2351-2361. PubMed ID: 36898003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the vibrational couplings of nucleobases.
    Jiang Y; Wang L
    J Chem Phys; 2020 Feb; 152(8):084114. PubMed ID: 32113367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Vibrational Frequency Maps for Nucleobases.
    Jiang Y; Wang L
    J Phys Chem B; 2019 Jul; 123(27):5791-5804. PubMed ID: 31260308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.
    Woys AM; Almeida AM; Wang L; Chiu CC; McGovern M; de Pablo JJ; Skinner JL; Gellman SH; Zanni MT
    J Am Chem Soc; 2012 Nov; 134(46):19118-28. PubMed ID: 23113791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics.
    Reppert M; Tokmakoff A
    Annu Rev Phys Chem; 2016 May; 67():359-86. PubMed ID: 27023758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing local changes to α-helical structures with 2D IR spectroscopy and isotope labeling.
    Webb KR; Hess KA; Shmidt A; Segner KD; Buchanan LE
    Biophys J; 2023 Apr; 122(8):1491-1502. PubMed ID: 36906800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure.
    Krummel AT; Zanni MT
    J Phys Chem B; 2006 Jul; 110(28):13991-4000. PubMed ID: 16836352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational preferences and vibrational frequency distributions of short peptides in relation to multidimensional infrared spectroscopy.
    Gnanakaran S; Hochstrasser RM
    J Am Chem Soc; 2001 Dec; 123(51):12886-98. PubMed ID: 11749547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting DNA vibrational circular dichroism spectra using a coupling model from two-dimensional infrared spectroscopy.
    Krummel AT; Zanni MT
    J Phys Chem B; 2006 Dec; 110(48):24720-7. PubMed ID: 17134235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups.
    Blume A; Hübner W; Messner G
    Biochemistry; 1988 Oct; 27(21):8239-49. PubMed ID: 3233207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational dynamics of DNA. III. Molecular dynamics simulations of DNA in water and theoretical calculations of the two-dimensional vibrational spectra.
    Lee C; Park KH; Kim JA; Hahn S; Cho M
    J Chem Phys; 2006 Sep; 125(11):114510. PubMed ID: 16999493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation-assisted two-dimensional infrared (RA 2DIR) method: accessing distances over 10 A and measuring bond connectivity patterns.
    Rubtsov IV
    Acc Chem Res; 2009 Sep; 42(9):1385-94. PubMed ID: 19462972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Sensitivity to Local Dynamics in Peptides by Use of Temperature-Jump IR Spectroscopy and Isotope Labeling.
    Scheerer D; Chi H; McElheny D; Keiderling TA; Hauser K
    Chemistry; 2020 Mar; 26(16):3524-3534. PubMed ID: 31782580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of p-(
    Le Sueur AL; Ramos S; Ellefsen JD; Cook S; Thielges MC
    Anal Chem; 2017 May; 89(10):5254-5260. PubMed ID: 28406611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward detecting the formation of a single helical turn by 2D IR cross peaks between the amide-I and -II modes.
    Maekawa H; De Poli M; Moretto A; Toniolo C; Ge NH
    J Phys Chem B; 2009 Aug; 113(34):11775-86. PubMed ID: 19642666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical amide I vibrational frequency map: application to 2D-IR line shapes for isotope-edited membrane peptide bundles.
    Lin YS; Shorb JM; Mukherjee P; Zanni MT; Skinner JL
    J Phys Chem B; 2009 Jan; 113(3):592-602. PubMed ID: 19053670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A library of IR bands of nucleic acids in solution.
    Banyay M; Sarkar M; Gräslund A
    Biophys Chem; 2003 Jun; 104(2):477-88. PubMed ID: 12878315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.