These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36898095)

  • 1. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams.
    Yang S; Allen JA; Hong C; Arnold KP; Weiss SM; Ndukaife JC
    Phys Rev Lett; 2023 Feb; 130(8):083802. PubMed ID: 36898095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V.
    Zhang H; Liu YC; Wang C; Zhang N; Lu C
    Opt Lett; 2020 Sep; 45(17):4794-4797. PubMed ID: 32870859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.
    Mivelle M; Viktorovitch P; Baida FI; El Eter A; Xie Z; Vo TP; Atie E; Burr GW; Nedeljkovic D; Rauch JY; Callard S; Grosjean T
    Opt Express; 2014 Jun; 22(12):15075-87. PubMed ID: 24977600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide.
    Lin PT; Lee PT
    Opt Lett; 2011 Feb; 36(3):424-6. PubMed ID: 21283211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics.
    Rao Z; Hesselink L; Harris JS
    Opt Lett; 2007 Jul; 32(14):1995-7. PubMed ID: 17632621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N x N switching, logic, and wavelength multiplexing.
    Soref R; Hendrickson J
    Opt Express; 2015 Dec; 23(25):32582-96. PubMed ID: 26699048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear modulation on optical trapping in a plasmonic bowtie structure.
    Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X
    Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.
    Roxworthy BJ; Ko KD; Kumar A; Fung KH; Chow EK; Liu GL; Fang NX; Toussaint KC
    Nano Lett; 2012 Feb; 12(2):796-801. PubMed ID: 22208881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip.
    El Eter A; Hameed NM; Baida FI; Salut R; Filiatre C; Nedeljkovic D; Atie E; Bole S; Grosjean T
    Opt Express; 2014 Apr; 22(8):10072-80. PubMed ID: 24787888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.
    Lu Y; Du G; Chen F; Yang Q; Bian H; Yong J; Hou X
    Sci Rep; 2016 Sep; 6():32675. PubMed ID: 27666667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.
    Lin PT; Chu HY; Lu TW; Lee PT
    Lab Chip; 2014 Dec; 14(24):4647-52. PubMed ID: 25288366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.