BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36898186)

  • 1. Designed peptide amphiphiles as scaffolds for tissue engineering.
    Sun W; Gregory DA; Zhao X
    Adv Colloid Interface Sci; 2023 Apr; 314():102866. PubMed ID: 36898186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
    Godbe JM; Freeman R; Lewis JA; Sasselli IR; Sangji MH; Stupp SI
    Acta Biomater; 2021 Nov; 135():87-99. PubMed ID: 34481055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.
    Hao Z; Li H; Wang Y; Hu Y; Chen T; Zhang S; Guo X; Cai L; Li J
    Adv Sci (Weinh); 2022 Apr; 9(11):e2103820. PubMed ID: 35128831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering.
    Ding X; Zhao H; Li Y; Lee AL; Li Z; Fu M; Li C; Yang YY; Yuan P
    Adv Drug Deliv Rev; 2020; 160():78-104. PubMed ID: 33091503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designer Peptide Amphiphiles: Self-Assembly to Applications.
    Dasgupta A; Das D
    Langmuir; 2019 Aug; 35(33):10704-10724. PubMed ID: 31330107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering.
    Kumar P; Pillay V; Modi G; Choonara YE; du Toit LC; Naidoo D
    Recent Pat Drug Deliv Formul; 2011 Jan; 5(1):24-51. PubMed ID: 21143127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles.
    Fu IW; Nguyen HD
    Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gd(III)-labeled peptide nanofibers for reporting on biomaterial localization in vivo.
    Preslar AT; Parigi G; McClendon MT; Sefick SS; Moyer TJ; Haney CR; Waters EA; MacRenaris KW; Luchinat C; Stupp SI; Meade TJ
    ACS Nano; 2014 Jul; 8(7):7325-32. PubMed ID: 24937195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds.
    Harrington DA; Cheng EY; Guler MO; Lee LK; Donovan JL; Claussen RC; Stupp SI
    J Biomed Mater Res A; 2006 Jul; 78(1):157-67. PubMed ID: 16619254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urea-Modified Self-Assembling Peptide Amphiphiles That Form Well-Defined Nanostructures and Hydrogels for Biomedical Applications.
    Xing H; Rodger A; Comer J; Picco AS; Huck-Iriart C; Ezell EL; Conda-Sheridan M
    ACS Appl Bio Mater; 2022 Oct; 5(10):4599-4610. PubMed ID: 35653507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials.
    Cui H; Webber MJ; Stupp SI
    Biopolymers; 2010; 94(1):1-18. PubMed ID: 20091874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering.
    Shi Y; Ferreira DS; Banerjee J; Pickford AR; Azevedo HS
    Biomater Sci; 2019 Dec; 7(12):5132-5142. PubMed ID: 31576824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled aggregates based on cationic amphiphilic peptides: structural insight.
    Rosa E; Diaferia C; De Mello L; Seitsonen J; Hamley IW; Accardo A
    Soft Matter; 2023 Jun; 19(25):4686-4696. PubMed ID: 37313785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers.
    Rexeisen EL; Fan W; Pangburn TO; Taribagil RR; Bates FS; Lodge TP; Tsapatsis M; Kokkoli E
    Langmuir; 2010 Feb; 26(3):1953-9. PubMed ID: 19877715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties.
    Samad MB; Chhonker YS; Contreras JI; McCarthy A; McClanahan MM; Murry DJ; Conda-Sheridan M
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28509362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembling Hydrogels Based on a Complementary Host-Guest Peptide Amphiphile Pair.
    Redondo-Gómez C; Abdouni Y; Becer CR; Mata A
    Biomacromolecules; 2019 Jun; 20(6):2276-2285. PubMed ID: 31067405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.