These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36898204)

  • 1. Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices.
    Yee DW; Lee MS; An J; Macfarlane RJ
    J Am Chem Soc; 2023 Mar; 145(11):6051-6056. PubMed ID: 36898204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle Brushes: Macromolecular Ligands for Materials Synthesis.
    Hueckel T; Luo X; Aly OF; Macfarlane RJ
    Acc Chem Res; 2023 Jul; 56(14):1931-1941. PubMed ID: 37390490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite tectons as unifying systems for nanoparticle assembly.
    Xia J; Lee M; Santos PJ; Horst N; Macfarlane RJ; Guo H; Travesset A
    Soft Matter; 2022 Mar; 18(11):2176-2192. PubMed ID: 35212698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembling Nanocomposite Tectons.
    Zhang J; Santos PJ; Gabrys PA; Lee S; Liu C; Macfarlane RJ
    J Am Chem Soc; 2016 Dec; 138(50):16228-16231. PubMed ID: 27935680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistimuli Responsive Nanocomposite Tectons for Pathway Dependent Self-Assembly and Acceleration of Covalent Bond Formation.
    Wang Y; Santos PJ; Kubiak JM; Guo X; Lee MS; Macfarlane RJ
    J Am Chem Soc; 2019 Aug; 141(33):13234-13243. PubMed ID: 31357862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices.
    Patra TK; Chan H; Podsiadlo P; Shevchenko EV; Sankaranarayanan SKRS; Narayanan B
    Nanoscale; 2019 Jun; 11(22):10655-10666. PubMed ID: 30839029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices.
    Mao R; Pretti E; Mittal J
    ACS Nano; 2021 May; 15(5):8466-8473. PubMed ID: 33939410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micelle-Assisted Formation of Nanoparticle Superlattices and Thermally Reversible Symmetry Transitions.
    Ha JM; Lim SH; Dey J; Lee SJ; Lee MJ; Kang SH; Jin KS; Choi SM
    Nano Lett; 2019 Apr; 19(4):2313-2321. PubMed ID: 30673238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering.
    Marino E; Rosen DJ; Yang S; Tsai EHR; Murray CB
    Nano Lett; 2023 May; 23(10):4250-4257. PubMed ID: 37184728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation treatment under several gigapascals assists diffusionless transformation in a face-centered cubic steel.
    Koyama M; Saitoh H; Sato T; Orimo SI; Akiyama E
    Sci Rep; 2021 Sep; 11(1):19384. PubMed ID: 34588585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tipping the Balance Between the bcc and fcc Phase Within the Alkali and Coinage Metal Groups.
    Robles-Navarro A; Jerabek P; Schwerdtfeger P
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202313679. PubMed ID: 37877444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles.
    Jiang Y; Duchamp M; Ang SJ; Yan H; Tan TL; Mirsaidov U
    Nat Commun; 2023 Jan; 14(1):104. PubMed ID: 36609570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembling Ordered Crystals with Disperse Building Blocks.
    Santos PJ; Cheung TC; Macfarlane RJ
    Nano Lett; 2019 Aug; 19(8):5774-5780. PubMed ID: 31348659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Softness- and Size-Dependent Packing Symmetries of Polymer-Grafted Nanoparticles.
    Yun H; Lee YJ; Xu M; Lee DC; Stein GE; Kim BJ
    ACS Nano; 2020 Aug; 14(8):9644-9651. PubMed ID: 32806057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.